亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Video Coding for Machines: Compact Visual Representation Compression for Intelligent Collaborative Analytics

计算机科学 人工智能 机器学习 视觉分析 编码(社会科学) 机器视觉 分析 可扩展性 分类 人机交互 计算机视觉 可视化 数据科学 数据库 统计 数学
作者
Wenhan Yang,Haofeng Huang,Yueyu Hu,Ling‐Yu Duan,Jiaying Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:5
标识
DOI:10.1109/tpami.2024.3367293
摘要

As an emerging research practice leveraging recent advanced AI techniques, e.g. deep models based prediction and generation, Video Coding for Machines (VCM) is committed to bridging to an extent separate research tracks of video/image compression and feature compression, and attempts to optimize compactness and efficiency jointly from a unified perspective of high accuracy machine vision and full fidelity human vision. With the rapid advances of deep feature representation and visual data compression in mind, in this paper, we summarize VCM methodology and philosophy based on existing academia and industrial efforts. The development of VCM follows a general rate-distortion optimization, and the categorization of key modules or techniques is established including feature-assisted coding, scalable coding, intermediate feature compression/optimization, and machine vision targeted codec, from broader perspectives of vision tasks, analytics resources, etc. From previous works, it is demonstrated that, although existing works attempt to reveal the nature of scalable representation in bits when dealing with machine and human vision tasks, there remains a rare study in the generality of low bit rate representation, and accordingly how to support a variety of visual analytic tasks. Therefore, we investigate a novel visual information compression for the analytics taxonomy problem to strengthen the capability of compact visual representations extracted from multiple tasks for visual analytics. A new perspective of task relationships versus compression is revisited. By keeping in mind the transferability among different machine vision tasks (e.g. high-level semantic and mid-level geometry-related), we aim to support multiple tasks jointly at low bit rates. In particular, to narrow the dimensionality gap between neural network generated features extracted from pixels and a variety of machine vision features/labels (e.g. scene class, segmentation labels), a codebook hyperprior is designed to compress the neural network-generated features. As demonstrated in our experiments, this new hyperprior model is expected to improve feature compression efficiency by estimating the signal entropy more accurately, which enables further investigation of the granularity of abstracting compact features among different tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
6秒前
192724836发布了新的文献求助10
21秒前
29秒前
Easypass完成签到 ,获得积分10
31秒前
慕青应助dihaha采纳,获得10
38秒前
烟花应助Leo采纳,获得10
48秒前
dihaha完成签到,获得积分10
48秒前
Herbs完成签到 ,获得积分10
53秒前
FashionBoy应助dihaha采纳,获得10
56秒前
zqq完成签到,获得积分0
1分钟前
脑洞疼应助十三采纳,获得10
1分钟前
192724836完成签到,获得积分20
1分钟前
小锤发布了新的文献求助10
1分钟前
含蓄的寄翠完成签到,获得积分10
1分钟前
科研通AI2S应助192724836采纳,获得10
1分钟前
tinyliiyong完成签到,获得积分10
1分钟前
1分钟前
sss完成签到 ,获得积分10
1分钟前
小锤完成签到 ,获得积分20
2分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
彭于晏应助十三采纳,获得10
2分钟前
布同完成签到,获得积分10
2分钟前
2分钟前
林思完成签到,获得积分10
2分钟前
老王家的二姑娘完成签到 ,获得积分10
2分钟前
平常的长颈鹿完成签到,获得积分10
2分钟前
852应助平常的长颈鹿采纳,获得10
2分钟前
2分钟前
FashionBoy应助KSung采纳,获得10
3分钟前
3分钟前
小胖子发布了新的文献求助10
3分钟前
机灵自中发布了新的文献求助50
3分钟前
机灵自中完成签到,获得积分10
3分钟前
3分钟前
动人的笑白完成签到,获得积分20
3分钟前
KSung发布了新的文献求助10
3分钟前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3072598
求助须知:如何正确求助?哪些是违规求助? 2726326
关于积分的说明 7493683
捐赠科研通 2374098
什么是DOI,文献DOI怎么找? 1258887
科研通“疑难数据库(出版商)”最低求助积分说明 610394
版权声明 596983