Prediction of the development of new coronary atherosclerotic plaques with radiomics

医学 无线电技术 置信区间 心脏病学 内科学 放射科 冠状动脉粥样硬化 试验预测值 冠状动脉造影 冠状动脉解剖学 比例危险模型 冠状动脉疾病 心肌梗塞
作者
Sang‐Eun Lee,Youngtaek Hong,J.H. Hong,Juyeong Jung,Ji Min Sung,Daniele Andreini,Mouaz H. Al‐Mallah,Matthew J. Budoff,Filippo Cademartiri,Kavitha M. Chinnaiyan,Jung Hyun Choi,Eun Ju Chun,Edoardo Conte,Ilan Gottlieb,Martin Hadamitzky,Yong‐Jin Kim,Byoung Kwon Lee,Jonathon Leipsic,Erica Maffei,Hugo Marques,Pedro de Araújo Gonçalves,Gianluca Pontone,Sanghoon Shin,Peter H. Stone,Habib Samady,Renu Virmani,Jagat Narula,Leslee J. Shaw,Jeroen J. Bax,Fay Y. Lin,James K. Min,Hyuk‐Jae Chang
出处
期刊:Journal of Cardiovascular Computed Tomography [Elsevier BV]
卷期号:18 (3): 274-280 被引量:1
标识
DOI:10.1016/j.jcct.2024.02.003
摘要

Background Radiomics is expected to identify imaging features beyond the human eye. We investigated whether radiomics can identify coronary segments that will develop new atherosclerotic plaques on coronary computed tomography angiography (CCTA). Methods From a prospective multinational registry of patients with serial CCTA studies at ≥ 2-year intervals, segments without identifiable coronary plaque at baseline were selected and radiomic features were extracted. Cox models using clinical risk factors (Model 1), radiomic features (Model 2) and both clinical risk factors and radiomic features (Model 3) were constructed to predict the development of a coronary plaque, defined as total PV ​≥ ​1 ​mm3, at follow-up CCTA in each segment. Results In total, 9583 normal coronary segments were identified from 1162 patients (60.3 ​± ​9.2 years, 55.7% male) and divided 8:2 into training and test sets. At follow-up CCTA, 9.8% of the segments developed new coronary plaque. The predictive power of Models 1 and 2 was not different in both the training and test sets (C-index [95% confidence interval (CI)] of Model 1 vs. Model 2: 0.701 [0.690–0.712] vs. 0.699 [0.0.688–0.710] and 0.696 [0.671–0.725] vs. 0.0.691 [0.667–0.715], respectively, all p ​> ​0.05). The addition of radiomic features to clinical risk factors improved the predictive power of the Cox model in both the training and test sets (C-index [95% CI] of Model 3: 0.772 [0.762–0.781] and 0.767 [0.751–0.787], respectively, all p ​< ​00.0001 compared to Models 1 and 2). Conclusion Radiomic features can improve the identification of segments that would develop new coronary atherosclerotic plaque. Clinical Trial Registration ClinicalTrials.gov NCT0280341.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助杨幂采纳,获得10
刚刚
义气访曼完成签到 ,获得积分10
1秒前
张小兔啊完成签到,获得积分10
1秒前
负责紊完成签到,获得积分10
1秒前
安详的曲奇完成签到,获得积分10
2秒前
3秒前
3秒前
iuiuiu发布了新的文献求助10
3秒前
3秒前
Timo干物类完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
stinkyfish完成签到,获得积分20
4秒前
SciGPT应助青柠采纳,获得10
4秒前
嘻嘻发布了新的文献求助10
4秒前
5秒前
鲤鱼小蕾完成签到,获得积分10
5秒前
5秒前
张俊敏发布了新的文献求助10
6秒前
酷雅的小跟班完成签到,获得积分20
6秒前
Xx完成签到 ,获得积分10
6秒前
阔达的萤完成签到,获得积分20
6秒前
明理夏槐发布了新的文献求助10
7秒前
研友_VZG7GZ应助saluo采纳,获得10
7秒前
静心安逸完成签到,获得积分10
7秒前
7秒前
CipherSage应助jm采纳,获得10
7秒前
阿Q完成签到,获得积分10
8秒前
小十七果完成签到,获得积分10
8秒前
今后应助包容寄云采纳,获得10
8秒前
乐观的水桃完成签到,获得积分10
9秒前
鳗鱼友灵完成签到,获得积分10
9秒前
9秒前
科目三应助不安青牛采纳,获得200
10秒前
耍酷紫安完成签到,获得积分10
10秒前
哈哈哈哈哈哈哈哈哈完成签到,获得积分20
10秒前
大徐1175发布了新的文献求助10
11秒前
zhang完成签到,获得积分10
11秒前
飘逸数据线完成签到,获得积分10
11秒前
热情蜜蜂完成签到,获得积分20
11秒前
背后海亦发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479