Tunneling Interpenetrative Lithium Ion Conduction Channels in Polymer-in-Ceramic Composite Solid Electrolytes

化学 陶瓷 快离子导体 锂(药物) 电解质 复合数 离子 聚合物 离子键合 化学工程 离子电导率 复合材料 物理化学 有机化学 电极 医学 材料科学 工程类 内分泌学
作者
Бо Лю,Junchao Chen,Youwei Wang,Wuliang Feng,Yanzhe Zhu,Sander F. H. Lambregts,Yongmin Wu,Cheng Yang,Ernst R. H. van Eck,Luming Peng,Arno P. M. Kentgens,Weiping Tang,Yongyao Xia
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (10): 6591-6603 被引量:6
标识
DOI:10.1021/jacs.3c11988
摘要

Polymer-in-ceramic composite solid electrolytes (PIC–CSEs) provide important advantages over individual organic or inorganic solid electrolytes. In conventional PIC–CSEs, the ion conduction pathway is primarily confined to the ceramics, while the faster routes associated with the ceramic–polymer interface remain blocked. This challenge is associated with two key factors: (i) the difficulty in establishing extensive and uninterrupted ceramic–polymer interfaces due to ceramic aggregation; (ii) the ceramic–polymer interfaces are unresponsive to conducting ions because of their inherent incompatibility. Here, we propose a strategy by introducing polymer-compatible ionic liquids (PCILs) to mediate between ceramics and the polymer matrix. This mediation involves the polar groups of PCILs interacting with Li+ ions on the ceramic surfaces as well as the interactions between the polar components of PCILs and the polymer chains. This strategy addresses the ceramic aggregation issue, resulting in uniform PIC–CSEs. Simultaneously, it activates the ceramic–polymer interfaces by establishing interpenetrating channels that promote the efficient transport of Li+ ions across the ceramic phase, the ceramic–polymer interfaces, and the intervening pathways. Consequently, the obtained PIC–CSEs exhibit high ionic conductivity, exceptional flexibility, and robust mechanical strength. A PIC–CSE comprising poly(vinylidene fluoride) (PVDF) and 60 wt % PCIL-coated Li3Zr2Si2PO12 (LZSP) fillers showcasing an ionic conductivity of 0.83 mS cm–1, a superior Li+ ion transference number of 0.81, and an elongation of ∼300% at 25 °C could be produced on meter-scale. Its lithium metal pouch cells show high energy densities of 424.9 Wh kg–1 (excluding packing films) and puncture safety. This work paves the way for designing PIC–CSEs with commercial viability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助qq781208654采纳,获得10
2秒前
衰神发布了新的文献求助10
3秒前
3秒前
赵立韶华完成签到,获得积分10
4秒前
5秒前
阿巴理完成签到,获得积分10
7秒前
winnie完成签到,获得积分10
10秒前
西西弗斯发布了新的文献求助10
10秒前
sea发布了新的文献求助10
12秒前
矮小的寒天完成签到,获得积分10
13秒前
zhangpeng完成签到,获得积分10
13秒前
yayaya应助volcanoes采纳,获得10
13秒前
15秒前
QSJ完成签到,获得积分10
15秒前
15秒前
ymym发布了新的文献求助10
15秒前
酷波er应助西西弗斯采纳,获得10
16秒前
Migue应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
wwz应助科研通管家采纳,获得20
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
科研通AI2S应助拼搏尔风采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得10
17秒前
zho应助科研通管家采纳,获得50
17秒前
科研通AI2S应助科研通管家采纳,获得30
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
无花果应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
无花果应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
科研圈外人完成签到 ,获得积分10
18秒前
酸奶巧克力完成签到,获得积分10
18秒前
冯依梦完成签到 ,获得积分10
18秒前
xzy998应助调皮寒凝采纳,获得10
19秒前
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162896
求助须知:如何正确求助?哪些是违规求助? 2813938
关于积分的说明 7902359
捐赠科研通 2473525
什么是DOI,文献DOI怎么找? 1316888
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187