Monitoring of key Camellia Oleifera phenology features using field cameras and deep learning

钥匙(锁) 物候学 油茶 领域(数学) 人工智能 遥感 深度学习 计算机科学 地理 植物 数学 生态学 生物 纯数学
作者
H. Li,Enping Yan,Jiawei Jiang,Dengkui Mo
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108748-108748 被引量:1
标识
DOI:10.1016/j.compag.2024.108748
摘要

A rapid and accurate yield estimation is of great significance to the management and sustainable development of Camellia Oleifera forests. Consequently, the simultaneous and accurate detection of key phenology features of Camellia Oleifera (buds, flowers, fruits) is crucial for precise yield estimation. This not only enables robotic harvesting but also allows for the prediction of peak flowering and fruit ripening periods to determine the optimal harvesting time. However, in recent studies, only Camellia Oleifera fruits have been marked and detected. Therefore, to enable rapid yield estimation, it is necessary to simultaneously detect the key phenology stages (buds, flowers, fruits) of Camellia Oleifera. In this study, we annotated, trained, and predicted Camellia Oleifera buds, flowers, and fruits collected via field cameras to observe their daily quantitative changes. Quantity change curves were generated to estimate crucial phenology stages. Phenology feature detection and transfer learning were performed using the YOLO v5 model, widely used YOLO v3 model, and CenterNet model with center point prediction, all trained on the same dataset. The best model for phenology feature detection was selected based on a comparison of average precision, with the YOLO v5 model achieving a higher mean Average Precision (mAP) value of 91.31 % compared to the CenterNet (85.43 %) and YOLO v3 (81.00 %) models. In YOLO v5, the AP values for bud, flower, and fruit detection were 82.80 %, 98.13 %, and 92.99 %, respectively, surpassing the CenterNet model by 3.97 %, 2.44 %, and 11.23 %, and the YOLO v3 model by 6.39 %, 17.13 %, and 11.67 %. The image size was adapted from 4000 × 3000 pixels to 512 × 512 pixels for model optimization. Additionally, data from the Seedling Center of Liuyang City collected at different years and times were utilized to showcase the generalizability and scalability of the selected models, resulting in mAP values of 86.14 %, 80.17 %, and 69.20 % for the three above-mentioned models respectively. The plotted phenology change curves unveiled that Camellia Oleifera undergoes four stages: fruit enlargement period, bud enlargement period, flowering period, and flower wilting period. The conclusion can be drawn that using field cameras and YOLOv5 can simultaneously achieve real-time detection of key phenology features (buds, flowers, and fruits) of Camellia Oleifera, in order to further record crucial phenology patterns (such as flowering peaks and fruit ripening periods). This study offers theoretical references and scientific evidence for monitoring changes in key phenology features of Camellia Oleifera.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
木叶完成签到,获得积分10
2秒前
3秒前
hamzhang0426完成签到,获得积分10
3秒前
小俊俊发布了新的文献求助10
5秒前
5秒前
浮一白完成签到,获得积分10
5秒前
嗯哼应助平常的香露采纳,获得20
6秒前
大模型应助饼饼采纳,获得10
7秒前
听说发布了新的文献求助10
7秒前
彭于晏应助mochi采纳,获得10
8秒前
9秒前
Zzz发布了新的文献求助10
10秒前
SEAMUS发布了新的文献求助10
10秒前
yangbo666发布了新的文献求助10
10秒前
滚滚真可爱完成签到,获得积分10
11秒前
李鑫发布了新的文献求助10
11秒前
12秒前
NANA完成签到,获得积分10
12秒前
酷波er应助爱大美采纳,获得10
15秒前
权灵萱完成签到,获得积分10
15秒前
瘦笔焚香完成签到,获得积分10
15秒前
NANA发布了新的文献求助10
15秒前
15秒前
深情安青应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得30
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
CipherSage应助平常秋珊采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
鱼鳞飞飞应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
16秒前
fryeia完成签到,获得积分10
16秒前
17秒前
万晶发布了新的文献求助10
17秒前
怡然的幻灵完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154423
求助须知:如何正确求助?哪些是违规求助? 2805324
关于积分的说明 7864266
捐赠科研通 2463518
什么是DOI,文献DOI怎么找? 1311381
科研通“疑难数据库(出版商)”最低求助积分说明 629574
版权声明 601821