Deep stochastic reinforcement learning-based energy management strategy for fuel cell hybrid electric vehicles

强化学习 深度学习 人工神经网络 行驶循环 电动汽车 计算机科学 人工智能 能源管理 工程类 功率(物理) 能量(信号处理) 数学 量子力学 统计 物理
作者
Basel Jouda,Ahmad Jobran Al-Mahasneh,Mohammed Abu Mallouh
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:301: 117973-117973 被引量:3
标识
DOI:10.1016/j.enconman.2023.117973
摘要

Fuel cell hybrid electric vehicles offer a promising solution for sustainable and environment friendly transportation, but they necessitate efficient energy management strategies (EMSs) to optimize their fuel economy. However, designing an optimal leaning-based EMS becomes challenging in the presence of limited training data. This paper presents a deep stochastic reinforcement learning based approach to address this issue of epistemic uncertainty in a midsize fuel cell hybrid electric vehicle. The approach introduces a deep REINFORCE framework with a deep neural network baseline and entropy regularization to develop a stochastic policy for EMS. The performance of the proposed approach is benchmarked against three EMSs: i) a state-of- art deep deterministic reinforcement learning technique called Double Deep Q-Network (DDQN), Power Follower Controller (PFC) and Fuzzy Logic Controller (FLC). Using New York City cycle as a validation drive cycle, the deep REINFORCE approach improves fuel economy by 7.68%, 13.53%, and 10% compared to DDQN, PFC, and FLC, respectively. The deep REINFORCE approach improves fuel economy by 5.31 %,9.78 %, and 9.93 % compared to DDQN, PFC, and FLC, respectively under another validation cycle, Amman cycle. Moreover, the training results show that the proposed algorithm reduces training time by 38% compared to the DDQN approach. The proposed deep REINFORCE-based EMS shows superiority not only in terms of fuel economy, but also in terms of dealing with epistemic uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
3秒前
3秒前
今后应助GGYY采纳,获得10
4秒前
落忆发布了新的文献求助10
5秒前
DD发布了新的文献求助10
6秒前
future发布了新的文献求助10
6秒前
lxh关注了科研通微信公众号
8秒前
蒙古马发布了新的文献求助10
8秒前
8秒前
9秒前
思源应助科研小白采纳,获得10
10秒前
11秒前
研友_5Y9775发布了新的文献求助10
11秒前
幽默小丸子完成签到,获得积分10
11秒前
积极的小馒头应助hhhhhhh采纳,获得10
12秒前
13秒前
15秒前
15秒前
16秒前
suolonglong发布了新的文献求助10
17秒前
充电宝应助Aurora采纳,获得10
18秒前
服部平次发布了新的文献求助10
18秒前
英姑应助研友_5Y9775采纳,获得10
19秒前
香蕉觅云应助研友_5Y9775采纳,获得10
19秒前
19秒前
午见千山应助right采纳,获得10
19秒前
李爱国应助都是采纳,获得10
22秒前
DD完成签到,获得积分10
22秒前
CodeCraft应助dungaway采纳,获得10
23秒前
23秒前
欻欻发布了新的文献求助10
23秒前
24秒前
24秒前
温柔的冰香完成签到,获得积分20
24秒前
25秒前
阳光he完成签到,获得积分10
25秒前
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141156
求助须知:如何正确求助?哪些是违规求助? 2792103
关于积分的说明 7801577
捐赠科研通 2448294
什么是DOI,文献DOI怎么找? 1302503
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601237