Intelligent Inversion Analysis of Drilling Gas Kick Characteristic Parameters and Advanced Predictions of Development Trends

石油工程 钻探 反演(地质) 地质学 机械工程 工程类 地震学 构造学
作者
Hu Yin,Gaocheng Li,Xiao Jingjing,Hongwei Cui,Tao Fan,Qian Li
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:: 1-18
标识
DOI:10.2118/219474-pa
摘要

Summary Gas kicks are a common and complex occurrence in oil and gas exploration and development. Obtaining the characteristic parameters promptly and accurately after a gas kick occurs is of utmost importance. The kick characteristic parameters are essential foundational data for accurately understanding the multiphase flow state within the wellbore, analyzing kick development trends, and formulating well-killing design. Traditional methods for determining gas kick characteristic parameters often involve trial estimation, a process that can introduce significant arbitrariness. Alternatively, using specialized equipment for measurement and analysis is an option, but it can be time-consuming and limited by technology and cost constraints. This paper proposes an intelligent inversion method for kick characteristic parameters based on surface logging data, including standpipe pressure and mud pit volume. First, a gas kick simulation model is developed based on wellbore multiphase flow theory. This model can accurately simulate the changes in surface logging parameters that occur when a gas kick occurs. Next, the particle swarm optimization algorithm is used to optimize the kick parameters, such as the gas-influx index and pore pressure, in conjunction with the gas kick simulation model. The optimization evaluation criterion is the Fréchet distance, which is used to identify the calculated curve that is most similar to the actual logging parameter change curve. Subsequently, kick trends can be predicted using the simulation model based on these kick parameters. The case analysis demonstrates that the method proposed in this paper can rapidly acquire the gas kick characteristic parameters based on the early change characteristics of logging parameters. It effectively simulates and reproduces the true distribution of wellbore fluids, enabling advanced prediction of kick development. This approach helps in preparing preventive measures in advance, reducing the risk of accidents, and minimizing financial losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助魔山西红柿采纳,获得20
1秒前
化工波比发布了新的文献求助10
3秒前
3秒前
3秒前
李健应助Dr_zsc采纳,获得10
3秒前
4秒前
4秒前
Harper发布了新的文献求助10
4秒前
微醺钓青鱼完成签到 ,获得积分10
5秒前
科研通AI2S应助Annie采纳,获得10
5秒前
6秒前
6秒前
烟花应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
sunny发布了新的文献求助10
8秒前
wendy发布了新的文献求助100
8秒前
Ava应助含糊的皮卡丘采纳,获得10
9秒前
10秒前
封印完成签到,获得积分10
10秒前
飞飞鱼完成签到,获得积分10
10秒前
ddddd发布了新的文献求助10
10秒前
梅子发布了新的文献求助10
10秒前
希望天下0贩的0应助justin采纳,获得10
10秒前
李牧发布了新的文献求助10
11秒前
追寻的书蕾完成签到,获得积分10
14秒前
pcyang完成签到,获得积分10
14秒前
李健应助无敌W采纳,获得10
14秒前
研友_VZG7GZ应助矮小的芷雪采纳,获得10
15秒前
hahaha发布了新的文献求助10
17秒前
彭于晏应助niyl采纳,获得10
18秒前
18秒前
19秒前
蔡徐坤完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812648
关于积分的说明 7895876
捐赠科研通 2471484
什么是DOI,文献DOI怎么找? 1316042
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112