已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Intelligent Inversion Analysis of Drilling Gas Kick Characteristic Parameters and Advanced Predictions of Development Trends

石油工程 钻探 反演(地质) 地质学 机械工程 工程类 地震学 构造学
作者
Hu Yin,Gaocheng Li,Xiao Jingjing,Hongwei Cui,Tao Fan,Qian Li
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:: 1-18
标识
DOI:10.2118/219474-pa
摘要

Summary Gas kicks are a common and complex occurrence in oil and gas exploration and development. Obtaining the characteristic parameters promptly and accurately after a gas kick occurs is of utmost importance. The kick characteristic parameters are essential foundational data for accurately understanding the multiphase flow state within the wellbore, analyzing kick development trends, and formulating well-killing design. Traditional methods for determining gas kick characteristic parameters often involve trial estimation, a process that can introduce significant arbitrariness. Alternatively, using specialized equipment for measurement and analysis is an option, but it can be time-consuming and limited by technology and cost constraints. This paper proposes an intelligent inversion method for kick characteristic parameters based on surface logging data, including standpipe pressure and mud pit volume. First, a gas kick simulation model is developed based on wellbore multiphase flow theory. This model can accurately simulate the changes in surface logging parameters that occur when a gas kick occurs. Next, the particle swarm optimization algorithm is used to optimize the kick parameters, such as the gas-influx index and pore pressure, in conjunction with the gas kick simulation model. The optimization evaluation criterion is the Fréchet distance, which is used to identify the calculated curve that is most similar to the actual logging parameter change curve. Subsequently, kick trends can be predicted using the simulation model based on these kick parameters. The case analysis demonstrates that the method proposed in this paper can rapidly acquire the gas kick characteristic parameters based on the early change characteristics of logging parameters. It effectively simulates and reproduces the true distribution of wellbore fluids, enabling advanced prediction of kick development. This approach helps in preparing preventive measures in advance, reducing the risk of accidents, and minimizing financial losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助水蜜桃一大钵采纳,获得10
刚刚
樱桃味的火苗完成签到,获得积分10
1秒前
哭泣的丝完成签到 ,获得积分10
4秒前
6秒前
7秒前
9秒前
浦肯野完成签到,获得积分0
10秒前
赵莹静发布了新的文献求助10
14秒前
16秒前
打打应助喝牛奶de猪采纳,获得10
18秒前
20秒前
Aurora发布了新的文献求助10
21秒前
传奇3应助ACE采纳,获得10
25秒前
Chen完成签到 ,获得积分10
27秒前
31秒前
yuan完成签到 ,获得积分10
34秒前
热心市民DSQ完成签到,获得积分10
34秒前
37秒前
星辰大海应助隔壁的小民采纳,获得10
41秒前
48秒前
49秒前
51秒前
sy发布了新的文献求助10
55秒前
玛琳卡迪马完成签到 ,获得积分10
55秒前
明亮尔烟完成签到,获得积分20
56秒前
赵莹静完成签到,获得积分20
56秒前
56秒前
博ge完成签到 ,获得积分10
1分钟前
冷静新烟完成签到,获得积分20
1分钟前
传奇3应助冷酷的天空采纳,获得10
1分钟前
1分钟前
luocan完成签到,获得积分10
1分钟前
可爱的函函应助1111采纳,获得10
1分钟前
1分钟前
1分钟前
ZhaoY完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076871
求助须知:如何正确求助?哪些是违规求助? 4296247
关于积分的说明 13386588
捐赠科研通 4118438
什么是DOI,文献DOI怎么找? 2255317
邀请新用户注册赠送积分活动 1259804
关于科研通互助平台的介绍 1192846