Intelligent Inversion Analysis of Drilling Gas Kick Characteristic Parameters and Advanced Predictions of Development Trends

石油工程 钻探 反演(地质) 地质学 机械工程 工程类 地震学 构造学
作者
Hu Yin,Gaocheng Li,Xiao Jingjing,Hongwei Cui,Tao Fan,Qian Li
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:: 1-18
标识
DOI:10.2118/219474-pa
摘要

Summary Gas kicks are a common and complex occurrence in oil and gas exploration and development. Obtaining the characteristic parameters promptly and accurately after a gas kick occurs is of utmost importance. The kick characteristic parameters are essential foundational data for accurately understanding the multiphase flow state within the wellbore, analyzing kick development trends, and formulating well-killing design. Traditional methods for determining gas kick characteristic parameters often involve trial estimation, a process that can introduce significant arbitrariness. Alternatively, using specialized equipment for measurement and analysis is an option, but it can be time-consuming and limited by technology and cost constraints. This paper proposes an intelligent inversion method for kick characteristic parameters based on surface logging data, including standpipe pressure and mud pit volume. First, a gas kick simulation model is developed based on wellbore multiphase flow theory. This model can accurately simulate the changes in surface logging parameters that occur when a gas kick occurs. Next, the particle swarm optimization algorithm is used to optimize the kick parameters, such as the gas-influx index and pore pressure, in conjunction with the gas kick simulation model. The optimization evaluation criterion is the Fréchet distance, which is used to identify the calculated curve that is most similar to the actual logging parameter change curve. Subsequently, kick trends can be predicted using the simulation model based on these kick parameters. The case analysis demonstrates that the method proposed in this paper can rapidly acquire the gas kick characteristic parameters based on the early change characteristics of logging parameters. It effectively simulates and reproduces the true distribution of wellbore fluids, enabling advanced prediction of kick development. This approach helps in preparing preventive measures in advance, reducing the risk of accidents, and minimizing financial losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zokor完成签到 ,获得积分0
1秒前
九龙飞翔完成签到,获得积分10
2秒前
yookia应助koukou采纳,获得10
2秒前
2秒前
lh发布了新的文献求助10
4秒前
阳光的雁易完成签到,获得积分10
5秒前
研友_VZG7GZ应助DamenS采纳,获得10
6秒前
CodeCraft应助DamenS采纳,获得10
6秒前
万能图书馆应助DamenS采纳,获得10
6秒前
慕青应助DamenS采纳,获得10
6秒前
顾矜应助DamenS采纳,获得10
6秒前
慕青应助DamenS采纳,获得10
6秒前
脑洞疼应助DamenS采纳,获得10
6秒前
Jasper应助DamenS采纳,获得10
6秒前
共享精神应助DamenS采纳,获得10
6秒前
wanci应助DamenS采纳,获得10
6秒前
GGGG发布了新的文献求助20
7秒前
8秒前
共享精神应助Baihanyu采纳,获得10
8秒前
忧郁豆芽发布了新的文献求助10
9秒前
10秒前
小萝卜完成签到,获得积分10
11秒前
忧郁书双完成签到,获得积分10
12秒前
研友_Ze0vBn完成签到,获得积分10
12秒前
13秒前
kunkun完成签到,获得积分10
13秒前
怡然的海瑶完成签到,获得积分10
13秒前
思源应助efls采纳,获得10
13秒前
feizhuliu完成签到,获得积分20
14秒前
落寞依珊完成签到,获得积分10
14秒前
香蕉觅云应助DamenS采纳,获得10
15秒前
顾矜应助DamenS采纳,获得10
15秒前
大模型应助DamenS采纳,获得10
15秒前
CodeCraft应助DamenS采纳,获得10
15秒前
情怀应助DamenS采纳,获得10
15秒前
汉堡包应助DamenS采纳,获得10
15秒前
彭于晏应助DamenS采纳,获得10
15秒前
无花果应助DamenS采纳,获得10
15秒前
隐形曼青应助DamenS采纳,获得10
15秒前
共享精神应助DamenS采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954299
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099026
捐赠科研通 3230828
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801651