强化学习
计算机科学
容错
人工智能
神经进化
忠诚
人口
非线性系统
控制理论(社会学)
控制(管理)
控制工程
工程类
人工神经网络
分布式计算
物理
社会学
人口学
电信
量子力学
作者
Vlad Gavra,Erik-Jan Van Kampen
出处
期刊:Journal of Guidance Control and Dynamics
[American Institute of Aeronautics and Astronautics]
日期:2024-02-21
卷期号:47 (5): 887-900
摘要
Recent research in artificial intelligence potentially provides solutions to the challenging problem of fault-tolerant and robust flight control. This paper proposes a novel Safety-Informed Evolutionary Reinforcement Learning algorithm (SERL), which combines Deep Reinforcement Learning (DRL) and neuroevolution to optimize a population of nonlinear control policies. Using SERL, the work has trained agents to provide attitude tracking on a high-fidelity nonlinear fixed-wing aircraft model. Compared to a state-of-the-art DRL solution, SERL achieves better tracking performance in nine out of ten cases, remaining robust against faults and changes in flight conditions, while providing smoother action signals.
科研通智能强力驱动
Strongly Powered by AbleSci AI