表面改性
光化学
共价有机骨架
人工光合作用
化学
电子受体
电子转移
接受者
量子产额
化学工程
过氧化氢
试剂
共价键
电子供体
光催化
催化作用
有机化学
物理化学
荧光
物理
量子力学
工程类
凝聚态物理
作者
Yanghui Hou,Peng Zhou,Fuyang Liu,Yanyu Lü,Hao Tan,Zhengmao Li,Meiping Tong,Jinren Ni
标识
DOI:10.1002/anie.202318562
摘要
Abstract The insufficient exciton ( e − ‐ h + pair) separation/transfer and sluggish two‐electron water oxidation are two main factors limiting the H 2 O 2 photosynthetic efficiency of covalent organic frameworks (COFs) photocatalysts. Herein, we present an alternative strategy to simultaneously facilitate exciton separation/transfer and reduce the energy barrier of two‐electron water oxidation in COFs via a dicyano functionalization. The in situ characterization and theoretical calculations reveal that the dicyano functionalization improves the amount of charge transfer channels between donor and acceptor units from two in COF‐0CN without cyano functionalization to three in COF‐1CN with mono‐cyano functionalization and four in COF‐2CN with dicyano functionalization, leading to the highest separation/transfer efficiency in COF‐2CN. More importantly, the dicyano group activates the neighbouring C atom to produce the key *OH intermediate for effectively reducing the energy barrier of rate‐determining two‐electron water oxidation in H 2 O 2 photosynthesis. The simultaneously enhanced exciton separation/transfer and two‐electron water oxidation in COF‐2CN result in high H 2 O 2 yield (1601 μmol g −1 h −1 ) from water and oxygen without using sacrificial reagent under visible‐light irradiation. COF‐2CN can effectively yield H 2 O 2 in water with wide pH range, in different real water samples, in scaled‐up reactor under natural sunlight irradiation, and in continuous‐flow reactor for consecutively producing H 2 O 2 solution for water decontamination.
科研通智能强力驱动
Strongly Powered by AbleSci AI