电解质
锂钴氧化物
材料科学
无机化学
锂(药物)
化学工程
阴极
氧化物
钴
化学
电极
锂离子电池
电池(电)
冶金
医学
功率(物理)
物理
物理化学
量子力学
工程类
内分泌学
作者
Saehun Kim,Jeong–A Lee,Dong Gyu Lee,Junsu Son,Tae Hyon Bae,Tae Kyung Lee,Nam‐Soon Choi
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2023-12-27
卷期号:9 (1): 262-270
被引量:4
标识
DOI:10.1021/acsenergylett.3c02534
摘要
High-voltage lithium cobalt oxide (LiCoO2) can be used to implement high-energy-density lithium-ion batteries (LIBs). However, the detrimental rock-salt phase-induced poor reversibility, lattice oxygen loss, Co leaching, and construction of a resistive cathode–electrolyte interface (CEI) by uncontrolled electrolyte decomposition at high voltages restrict the use of LiCoO2. Here, we discuss the rational design of an electrolyte for use in LIBs. We obtained this electrolyte using an ester-based solvent, without any severe evolution of CO2. The combined use of fluoroethylene carbonate and lithium fluoromalonato(difluoro)borate (LiFMDFB) constructs a LiF-rich solid–electrolyte interphase. Further, a 1,3,6-hexanetricarbonitrile (HTCN) and LiFMDFB-driven CEI prevent the structural collapse and improve the reversibility of the LiCoO2. Moreover, PF5 stabilization and HF scavenging by HTCN and tris(trimethylsilyl) phosphite limit the damage to interfacial layers and Co leaching. Our method for a rational electrolyte design may help in formulating more advanced electrolytes for practical application in high-voltage cell operations.
科研通智能强力驱动
Strongly Powered by AbleSci AI