Resting-state EEG measures cognitive impairment in Parkinson’s disease

脑电图 认知障碍 帕金森病 听力学 静息状态功能磁共振成像 认知 疾病 心理学 神经科学 医学 物理医学与康复 认知心理学 内科学
作者
Md Fahim Anjum,Arturo I. Espinoza,Rachel C. Cole,Anneliese A. Singh,Patrick May,Ergun Y. Uç,Soura Dasgupta,Nandakumar S. Narayanan
出处
期刊:npj Parkinson's disease 卷期号:10 (1) 被引量:2
标识
DOI:10.1038/s41531-023-00602-0
摘要

Abstract Cognitive dysfunction is common in Parkinson’s disease (PD). We developed and evaluated an EEG-based biomarker to index cognitive functions in PD from a few minutes of resting-state EEG. We hypothesized that synchronous changes in EEG across the power spectrum can measure cognition. We optimized a data-driven algorithm to efficiently capture these changes and index cognitive function in 100 PD and 49 control participants. We compared our EEG-based cognitive index with the Montreal cognitive assessment (MoCA) and cognitive tests across different domains from National Institutes of Health (NIH) Toolbox using cross-validations, regression models, and randomization tests. Finally, we externally validated our approach on 32 PD participants. We observed cognition-related changes in EEG over multiple spectral rhythms. Utilizing only 8 best-performing electrodes, our proposed index strongly correlated with cognition (MoCA: rho = 0.68, p value < 0.001; NIH-Toolbox cognitive tests: rho ≥ 0.56, p value < 0.001) outperforming traditional spectral markers (rho = −0.30–0.37). The index showed a strong fit in regression models ( R 2 = 0.46) with MoCA, yielded 80% accuracy in detecting cognitive impairment, and was effective in both PD and control participants. Notably, our approach was equally effective (rho = 0.68, p value < 0.001; MoCA) in out-of-sample testing. In summary, we introduced a computationally efficient data-driven approach for cross-domain cognition indexing using fewer than 10 EEG electrodes, potentially compatible with dynamic therapies like closed-loop neurostimulation. These results will inform next-generation neurophysiological biomarkers for monitoring cognition in PD and other neurological diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nihil完成签到,获得积分10
刚刚
活力的泥猴桃完成签到 ,获得积分10
1秒前
1秒前
2秒前
obito完成签到,获得积分10
2秒前
娜行发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
Ck完成签到,获得积分10
4秒前
烦烦完成签到 ,获得积分10
5秒前
百宝发布了新的文献求助10
6秒前
jiangnan发布了新的文献求助10
6秒前
Sev完成签到,获得积分10
6秒前
6秒前
可耐的乘风完成签到,获得积分10
6秒前
FIN应助obito采纳,获得30
7秒前
啾啾发布了新的文献求助10
7秒前
爱学习的向日葵完成签到,获得积分10
8秒前
8秒前
华仔应助泛泛之交采纳,获得10
9秒前
雪123发布了新的文献求助10
9秒前
9秒前
10秒前
charon发布了新的文献求助10
10秒前
凶狠的食铁兽完成签到,获得积分10
10秒前
星辰大海应助花花啊采纳,获得10
10秒前
华仔应助liuyingke采纳,获得10
10秒前
HEIKU应助还不如瞎写采纳,获得10
11秒前
liuliumei发布了新的文献求助30
12秒前
zhouzhou完成签到,获得积分10
12秒前
sure发布了新的文献求助10
12秒前
上官若男应助Hu111采纳,获得10
13秒前
务实的紫伊完成签到,获得积分10
13秒前
春风得意完成签到,获得积分10
13秒前
爱你呃不可能完成签到,获得积分10
13秒前
WSY完成签到,获得积分20
13秒前
666星爷留下了新的社区评论
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672