On Gradient Boosted Decision Trees and Neural Rankers: A Case-Study on Short-Video Recommendations at ShareChat

灵活性(工程) 计算机科学 人工智能 人工神经网络 机器学习 相关性(法律) 排名(信息检索) 数据科学 深层神经网络 决策树 政治学 数学 统计 法学
作者
Olivier Jeunen,Hitesh Sagtani,Hiroshi Doi,Rasul Karimov,Neeti Pokharna,Danish Kalim,Aleksei Ustimenko,Christopher Green,Wenzhe Shi,Rishabh Mehrotra
出处
期刊:Cornell University - arXiv
标识
DOI:10.1145/3632754.3632940
摘要

Practitioners who wish to build real-world applications that rely on ranking models, need to decide which modelling paradigm to follow. This is not an easy choice to make, as the research literature on this topic has been shifting in recent years. In particular, whilst Gradient Boosted Decision Trees (GBDTs) have reigned supreme for more than a decade, the flexibility of neural networks has allowed them to catch up, and recent works report accuracy metrics that are on par. Nevertheless, practical systems require considerations beyond mere accuracy metrics to decide on a modelling approach. This work describes our experiences in balancing some of the trade-offs that arise, presenting a case study on a short-video recommendation application. We highlight (1) neural networks' ability to handle large training data size, user- and item-embeddings allows for more accurate models than GBDTs in this setting, and (2) because GBDTs are less reliant on specialised hardware, they can provide an equally accurate model at a lower cost. We believe these findings are of relevance to researchers in both academia and industry, and hope they can inspire practitioners who need to make similar modelling choices in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你好完成签到,获得积分10
刚刚
刚刚
随便吧完成签到,获得积分10
刚刚
1秒前
自然蘑菇发布了新的文献求助50
1秒前
土豆刀哥大王完成签到,获得积分20
1秒前
xxxxx完成签到,获得积分10
1秒前
2秒前
2秒前
木子(Tao Li)完成签到,获得积分10
3秒前
彭于晏应助迷路的初柔采纳,获得10
4秒前
4秒前
islanddd发布了新的文献求助10
4秒前
4秒前
Orange应助张兰兰采纳,获得10
4秒前
安静的剑发布了新的文献求助10
5秒前
美年达发布了新的文献求助10
5秒前
李爱国应助milikki采纳,获得10
5秒前
文艺奇迹发布了新的文献求助10
5秒前
6秒前
6秒前
xxxxx发布了新的文献求助10
6秒前
所所应助姚盈盈采纳,获得10
6秒前
7秒前
7秒前
7秒前
9秒前
Stella应助liu采纳,获得10
10秒前
11秒前
活泼的太阳完成签到,获得积分10
11秒前
Susu发布了新的文献求助10
12秒前
彭于晏应助跃天杜采纳,获得10
12秒前
12秒前
琉璃发布了新的文献求助10
12秒前
Berrymeng完成签到,获得积分20
13秒前
贝利亚完成签到,获得积分10
14秒前
热情豌豆发布了新的文献求助30
14秒前
llllggg完成签到 ,获得积分10
14秒前
bkagyin应助电磁波十点半采纳,获得10
15秒前
boom完成签到,获得积分10
15秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588355
求助须知:如何正确求助?哪些是违规求助? 4671484
关于积分的说明 14787308
捐赠科研通 4625063
什么是DOI,文献DOI怎么找? 2531787
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468300