亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Two-Level Privacy-Preserving Framework: Federated Learning for Attack Detection in the Consumer Internet of Things

同态加密 计算机科学 加密 差别隐私 计算机安全 信息隐私 隐私软件 数据挖掘
作者
Elnaz Rabieinejad,Abbas Yazdinejad,Ali Dehghantanha,Gautam Srivastava
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (1): 4258-4265 被引量:11
标识
DOI:10.1109/tce.2024.3349490
摘要

As the adoption of Consumer Internet of Things (CIoT) devices surges, so do concerns about security vulnerabilities and privacy breaches. Given their integration into daily life and data collection capabilities, it is crucial to safeguard user privacy against unauthorized access and potential leaks proactively. Federated learning, an advanced machine learning, provides a promising solution by inherently prioritizing privacy, circumventing the need for centralized data collection, and bolstering security. Yet, federated learning opens up avenues for adversaries to extract critical information from the machine learning model through data leakage and model inference attacks targeted at the central server. In response to this particular concern, we present an innovative two-level privacy-preserving framework in this paper. This framework synergistically combines federated learning with partially homomorphic encryption, which we favor over other methods such as fully homomorphic encryption and differential privacy. Our preference for partially homomorphic encryption is based on its superior balance between computational efficiency and model performance. This advantage becomes particularly relevant when considering the intense computational demands of fully homomorphic encryption and the sacrifice to model accuracy often associated with differential privacy. Incorporating partially homomorphic encryption augments federated learning's privacy assurance, introducing an additional protective layer. The fundamental properties of partially homomorphic encryption enable the central server to aggregate and compute operations on the encrypted local models without decryption, thereby preserving sensitive information from potential exposures. Empirical results substantiate the efficacy of the proposed framework, which significantly ameliorates attack prediction error rates and reduces false alarms compared to conventional methods. Moreover, through security analysis, we prove our proposed framework's enhanced privacy compared to existing methods that deploy federated learning for attack detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
香蕉觅云应助cqhecq采纳,获得30
12秒前
Akim应助玄音采纳,获得10
18秒前
碳酸芙兰完成签到,获得积分10
18秒前
32秒前
alex_zhao完成签到,获得积分10
46秒前
50秒前
今后应助科研通管家采纳,获得10
52秒前
54秒前
完美世界应助无辜笑容采纳,获得10
55秒前
量子星尘发布了新的文献求助10
57秒前
1分钟前
cqhecq发布了新的文献求助30
1分钟前
大模型应助balabala采纳,获得10
1分钟前
charih完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
balabala发布了新的文献求助10
1分钟前
fladen发布了新的文献求助200
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
李健应助andrele采纳,获得10
2分钟前
高大的蜡烛完成签到,获得积分20
2分钟前
2分钟前
2分钟前
balabala完成签到,获得积分20
2分钟前
2分钟前
2分钟前
kk发布了新的文献求助10
2分钟前
balabala关注了科研通微信公众号
2分钟前
2分钟前
himes发布了新的文献求助10
2分钟前
SciGPT应助kk采纳,获得10
2分钟前
SciGPT应助himes采纳,获得10
3分钟前
cqhecq完成签到,获得积分10
3分钟前
kk完成签到,获得积分10
3分钟前
绿竹发布了新的文献求助20
3分钟前
南冥完成签到 ,获得积分10
3分钟前
311完成签到 ,获得积分10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957040
求助须知:如何正确求助?哪些是违规求助? 3503056
关于积分的说明 11111228
捐赠科研通 3234093
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264