Two-Level Privacy-Preserving Framework: Federated Learning for Attack Detection in the Consumer Internet of Things

同态加密 计算机科学 加密 差别隐私 计算机安全 信息隐私 隐私软件 数据挖掘
作者
Elnaz Rabieinejad,Abbas Yazdinejad,Ali Dehghantanha,Gautam Srivastava
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (1): 4258-4265 被引量:4
标识
DOI:10.1109/tce.2024.3349490
摘要

As the adoption of Consumer Internet of Things (CIoT) devices surges, so do concerns about security vulnerabilities and privacy breaches. Given their integration into daily life and data collection capabilities, it is crucial to safeguard user privacy against unauthorized access and potential leaks proactively. Federated learning, an advanced machine learning, provides a promising solution by inherently prioritizing privacy, circumventing the need for centralized data collection, and bolstering security. Yet, federated learning opens up avenues for adversaries to extract critical information from the machine learning model through data leakage and model inference attacks targeted at the central server. In response to this particular concern, we present an innovative two-level privacy-preserving framework in this paper. This framework synergistically combines federated learning with partially homomorphic encryption, which we favor over other methods such as fully homomorphic encryption and differential privacy. Our preference for partially homomorphic encryption is based on its superior balance between computational efficiency and model performance. This advantage becomes particularly relevant when considering the intense computational demands of fully homomorphic encryption and the sacrifice to model accuracy often associated with differential privacy. Incorporating partially homomorphic encryption augments federated learning's privacy assurance, introducing an additional protective layer. The fundamental properties of partially homomorphic encryption enable the central server to aggregate and compute operations on the encrypted local models without decryption, thereby preserving sensitive information from potential exposures. Empirical results substantiate the efficacy of the proposed framework, which significantly ameliorates attack prediction error rates and reduces false alarms compared to conventional methods. Moreover, through security analysis, we prove our proposed framework's enhanced privacy compared to existing methods that deploy federated learning for attack detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碗鱼发布了新的文献求助10
刚刚
1秒前
LiDaYang完成签到,获得积分10
1秒前
吖吖完成签到,获得积分10
1秒前
可爱天川完成签到,获得积分20
1秒前
NCU-Xzzzz完成签到,获得积分10
1秒前
2秒前
lnan完成签到,获得积分10
2秒前
2秒前
云中诗完成签到,获得积分10
2秒前
Jing完成签到,获得积分10
2秒前
bb完成签到,获得积分20
3秒前
3秒前
雁过完成签到 ,获得积分10
3秒前
NCU-Xzzzz发布了新的文献求助10
4秒前
小mol仙完成签到,获得积分10
4秒前
阳光的晓夏完成签到 ,获得积分10
4秒前
5秒前
沙漠水发布了新的文献求助10
5秒前
投石问路完成签到,获得积分10
5秒前
maizai完成签到,获得积分10
5秒前
嘟嘟发布了新的文献求助30
6秒前
6秒前
en完成签到,获得积分10
6秒前
啊福发布了新的文献求助10
6秒前
所所应助每天都要开心采纳,获得10
7秒前
Zeal完成签到,获得积分10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
gayfall应助科研通管家采纳,获得10
7秒前
8秒前
8秒前
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142981
求助须知:如何正确求助?哪些是违规求助? 2794000
关于积分的说明 7809074
捐赠科研通 2450260
什么是DOI,文献DOI怎么找? 1303729
科研通“疑难数据库(出版商)”最低求助积分说明 627055
版权声明 601374