Modeling Document Causal Structure with a Hypergraph for Event Causality Identification

超图 成对比较 因果关系(物理学) 事件(粒子物理) 计算机科学 人工智能 鉴定(生物学) 自然语言处理 理论计算机科学 事件结构 代表(政治) 机器学习 数学 统计 物理 植物 离散数学 量子力学 政治 政治学 法学 生物
作者
Wei Xiang,Cheng Liu,Bang Wang
标识
DOI:10.2139/ssrn.4694339
摘要

Document-level event causality identification (ECI) aims to detect causal relations in between event mentions in a document. Some recent approaches model diverse connections in between events, such as syntactic dependency and etc., with a graph neural network for event node representation learning. However, not all such connections contribute to augment node representation for causality identification. We argue that the events’ causal relations in a document are often interdependent, i.e., multiple causes with one effect, and identifying one cause for an effect may facilitate the identification of another cause of the same effect. In this paper, we use a hypergraph to model such events’ causal relations as the document causal structure, and propose a neural causal hypergraph model (NCHM) for event causality identification. In NCHM, we design a pairwise event semantics learning module (PES) based on prompt learning to learn the pairwise event representation as well as the pairwise causal connections between two events. A document causal hypergraph is then constructed based on pairwise causal connections. We also design a document causal structure learning module (DCS) with a hypergraph convolutional neural network to learn document-wise events' representations. Finally, two kinds of representations are concatenated for document-level event causality identification. Experiments on both EventStoryLine and English-MECI corpus show that our NCHM significantly outperforms the state-of-the-art algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小王发布了新的文献求助10
1秒前
1秒前
3秒前
jideli发布了新的文献求助10
4秒前
Jimmy完成签到,获得积分10
5秒前
充电宝应助CK采纳,获得10
5秒前
chenchenchen发布了新的文献求助10
6秒前
爱静静应助小西采纳,获得10
6秒前
爱静静应助leeleetyo采纳,获得10
7秒前
7秒前
sss发布了新的文献求助10
9秒前
oops发布了新的文献求助10
9秒前
9秒前
11秒前
w_完成签到,获得积分10
12秒前
puilinlee关注了科研通微信公众号
13秒前
康2000发布了新的文献求助10
14秒前
15秒前
iNk应助sss采纳,获得20
16秒前
玉ER完成签到,获得积分10
16秒前
16秒前
三月聚粮应助香蕉秃头jk采纳,获得10
17秒前
思源应助Mr_老旭采纳,获得10
17秒前
19秒前
永毅完成签到 ,获得积分10
19秒前
慕子默完成签到,获得积分10
20秒前
20秒前
康2000完成签到,获得积分10
21秒前
所所应助樱花祭采纳,获得10
21秒前
zhaoqiang发布了新的文献求助10
22秒前
26秒前
忧虑的羊完成签到 ,获得积分20
29秒前
丘比特应助哈娜桑de悦采纳,获得10
29秒前
29秒前
nana完成签到,获得积分10
29秒前
29秒前
Yducky发布了新的文献求助10
30秒前
zjspidany应助李四采纳,获得10
31秒前
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314052
求助须知:如何正确求助?哪些是违规求助? 2946471
关于积分的说明 8530176
捐赠科研通 2622111
什么是DOI,文献DOI怎么找? 1434341
科研通“疑难数据库(出版商)”最低求助积分说明 665205
邀请新用户注册赠送积分活动 650804