Insights into landslide susceptibility in different karst erosion landforms based on interpretable machine learning

地形地貌 喀斯特 仰角(弹道) 山崩 腐蚀 地质学 水文学(农业) 数字高程模型 自然地理学 地貌学 遥感 地理 岩土工程 几何学 古生物学 数学
作者
Deliang Sun,Jing Wang,Haijia Wen,Yuekai Ding,Qingyu Gu,Jialan Zhang,Fengtai Zhang
出处
期刊:Earth Surface Processes and Landforms [Wiley]
卷期号:49 (3): 1006-1027 被引量:3
标识
DOI:10.1002/esp.5748
摘要

Abstract The aim of the present study was to assess differences in the conditioning factors and the performance of landslide susceptibility mapping (LSM), employing the SHapley Additive exPlanations (SHAP) model to gain profound insights into the intrinsic decision‐making mechanism of LSM in diverse landforms. Two typical karst erosion landforms were selected as the research areas. Based on 15 conditioning factors, LSMs for the two areas were developed using the Bayesian optimization random forest (RF) and eXtreme Gradient Boosting (XGBoost). The SHAP model was used to explore the landslide formation mechanisms from both global and local perspectives. The results show that the area under the curve (AUC) values of the XGBoost models were 0.791 and 0.761, and the AUC values of the RF models were 0.844 and 0.817, in the two different landform areas, respectively. The RF model's accuracy was higher than that of the XGBoost model in both regions. In the low‐elevation hills area, the primary three conditioning factors were identified as slope, topographic relief and distance from the river. Conversely, in the microrelief and mesorelief low mountain area, the predominant conditioning factors were elevation, distance from the river and distance from the road. Both karst landform areas exhibited a high sensitivity to the distance from the river, indicating its significant interaction with other factors contributing to landslide occurrences. Notably, the RF model demonstrated superior performance compared to the XGBoost model, rendering it a more suitable choice for conducting landslide susceptibility mapping research in karst erosion landform areas. In the present study, a comprehensive explanatory framework based on the RF‐SHAP model was proposed, which enables both global and local interpretation of landslides in various karst landscapes. Such an approach explores the intrinsic decision‐making mechanism of the model, enhancing the transparency and realism of landslide susceptibility prediction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
科研通AI5应助无悔呀采纳,获得10
2秒前
2秒前
littlewhite关注了科研通微信公众号
3秒前
3秒前
零点起步完成签到,获得积分10
3秒前
慕青应助大力的含卉采纳,获得10
3秒前
善良过客发布了新的文献求助10
4秒前
4秒前
4秒前
dildil发布了新的文献求助10
4秒前
4秒前
hu970发布了新的文献求助10
5秒前
5秒前
王思鲁发布了新的文献求助30
5秒前
七个小矮人完成签到,获得积分10
6秒前
Aria完成签到,获得积分10
6秒前
感性的安露应助结实雪卉采纳,获得20
7秒前
零点起步发布了新的文献求助10
8秒前
故意的傲玉应助Ll采纳,获得10
8秒前
斯文败类应助xiuxiu_27采纳,获得10
8秒前
胖子完成签到,获得积分10
8秒前
王巧巧完成签到,获得积分10
8秒前
tangsuyun发布了新的文献求助10
9秒前
祝顺遂发布了新的文献求助10
9秒前
Seven发布了新的文献求助10
9秒前
土拨鼠完成签到 ,获得积分10
10秒前
邢夏之发布了新的文献求助10
10秒前
漂亮芹菜完成签到,获得积分10
10秒前
ZXH完成签到,获得积分10
10秒前
Evelyn完成签到 ,获得积分10
10秒前
习习应助sb采纳,获得10
11秒前
11秒前
11秒前
斯文败类应助liu采纳,获得10
12秒前
12秒前
gy发布了新的文献求助10
12秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759