亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Insights into landslide susceptibility in different karst erosion landforms based on interpretable machine learning

地形地貌 喀斯特 仰角(弹道) 山崩 腐蚀 地质学 水文学(农业) 数字高程模型 自然地理学 地貌学 遥感 地理 岩土工程 几何学 古生物学 数学
作者
Deliang Sun,Jing Wang,Haijia Wen,Yuekai Ding,Qingyu Gu,Jialan Zhang,Fengtai Zhang
出处
期刊:Earth Surface Processes and Landforms [Wiley]
卷期号:49 (3): 1006-1027 被引量:3
标识
DOI:10.1002/esp.5748
摘要

Abstract The aim of the present study was to assess differences in the conditioning factors and the performance of landslide susceptibility mapping (LSM), employing the SHapley Additive exPlanations (SHAP) model to gain profound insights into the intrinsic decision‐making mechanism of LSM in diverse landforms. Two typical karst erosion landforms were selected as the research areas. Based on 15 conditioning factors, LSMs for the two areas were developed using the Bayesian optimization random forest (RF) and eXtreme Gradient Boosting (XGBoost). The SHAP model was used to explore the landslide formation mechanisms from both global and local perspectives. The results show that the area under the curve (AUC) values of the XGBoost models were 0.791 and 0.761, and the AUC values of the RF models were 0.844 and 0.817, in the two different landform areas, respectively. The RF model's accuracy was higher than that of the XGBoost model in both regions. In the low‐elevation hills area, the primary three conditioning factors were identified as slope, topographic relief and distance from the river. Conversely, in the microrelief and mesorelief low mountain area, the predominant conditioning factors were elevation, distance from the river and distance from the road. Both karst landform areas exhibited a high sensitivity to the distance from the river, indicating its significant interaction with other factors contributing to landslide occurrences. Notably, the RF model demonstrated superior performance compared to the XGBoost model, rendering it a more suitable choice for conducting landslide susceptibility mapping research in karst erosion landform areas. In the present study, a comprehensive explanatory framework based on the RF‐SHAP model was proposed, which enables both global and local interpretation of landslides in various karst landscapes. Such an approach explores the intrinsic decision‐making mechanism of the model, enhancing the transparency and realism of landslide susceptibility prediction results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
30秒前
twk发布了新的文献求助10
34秒前
45秒前
量子星尘发布了新的文献求助10
47秒前
1分钟前
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
英俊的铭应助yuhan采纳,获得10
1分钟前
1分钟前
玛琳卡迪马完成签到,获得积分10
1分钟前
yuhan发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
虚幻凝荷完成签到 ,获得积分10
2分钟前
英俊的铭应助shi采纳,获得10
2分钟前
完美世界应助yuhan采纳,获得10
2分钟前
Song完成签到 ,获得积分10
2分钟前
春夏秋冬完成签到,获得积分10
3分钟前
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
小蘑菇应助科研通管家采纳,获得10
3分钟前
小伙子完成签到,获得积分10
3分钟前
3分钟前
yuhan发布了新的文献求助10
3分钟前
SciGPT应助虚幻凝荷采纳,获得10
3分钟前
3分钟前
yg发布了新的文献求助10
3分钟前
3分钟前
啊强完成签到 ,获得积分10
3分钟前
瘦瘦的师发布了新的文献求助10
4分钟前
虚幻凝荷关注了科研通微信公众号
4分钟前
吴倩完成签到 ,获得积分10
4分钟前
annathd完成签到,获得积分10
4分钟前
annathd发布了新的文献求助10
4分钟前
LvCR完成签到 ,获得积分10
4分钟前
4分钟前
guanoo完成签到,获得积分10
4分钟前
虚幻凝荷发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723812
求助须知:如何正确求助?哪些是违规求助? 5281374
关于积分的说明 15299197
捐赠科研通 4872091
什么是DOI,文献DOI怎么找? 2616563
邀请新用户注册赠送积分活动 1566385
关于科研通互助平台的介绍 1523269