亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Insights into landslide susceptibility in different karst erosion landforms based on interpretable machine learning

地形地貌 喀斯特 仰角(弹道) 山崩 腐蚀 地质学 水文学(农业) 数字高程模型 自然地理学 地貌学 遥感 地理 岩土工程 几何学 古生物学 数学
作者
Deliang Sun,Jing Wang,Haijia Wen,Yuekai Ding,Qingyu Gu,Jialan Zhang,Fengtai Zhang
出处
期刊:Earth Surface Processes and Landforms [Wiley]
卷期号:49 (3): 1006-1027 被引量:3
标识
DOI:10.1002/esp.5748
摘要

Abstract The aim of the present study was to assess differences in the conditioning factors and the performance of landslide susceptibility mapping (LSM), employing the SHapley Additive exPlanations (SHAP) model to gain profound insights into the intrinsic decision‐making mechanism of LSM in diverse landforms. Two typical karst erosion landforms were selected as the research areas. Based on 15 conditioning factors, LSMs for the two areas were developed using the Bayesian optimization random forest (RF) and eXtreme Gradient Boosting (XGBoost). The SHAP model was used to explore the landslide formation mechanisms from both global and local perspectives. The results show that the area under the curve (AUC) values of the XGBoost models were 0.791 and 0.761, and the AUC values of the RF models were 0.844 and 0.817, in the two different landform areas, respectively. The RF model's accuracy was higher than that of the XGBoost model in both regions. In the low‐elevation hills area, the primary three conditioning factors were identified as slope, topographic relief and distance from the river. Conversely, in the microrelief and mesorelief low mountain area, the predominant conditioning factors were elevation, distance from the river and distance from the road. Both karst landform areas exhibited a high sensitivity to the distance from the river, indicating its significant interaction with other factors contributing to landslide occurrences. Notably, the RF model demonstrated superior performance compared to the XGBoost model, rendering it a more suitable choice for conducting landslide susceptibility mapping research in karst erosion landform areas. In the present study, a comprehensive explanatory framework based on the RF‐SHAP model was proposed, which enables both global and local interpretation of landslides in various karst landscapes. Such an approach explores the intrinsic decision‐making mechanism of the model, enhancing the transparency and realism of landslide susceptibility prediction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田的柠檬水关注了科研通微信公众号
7秒前
田的柠檬水完成签到,获得积分20
33秒前
uto完成签到,获得积分10
36秒前
流星雨完成签到 ,获得积分10
43秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
充电宝应助科研通管家采纳,获得10
50秒前
深情安青应助科研通管家采纳,获得10
50秒前
好吃鱼完成签到 ,获得积分10
1分钟前
Koalas应助田的柠檬水采纳,获得20
1分钟前
徐志豪发布了新的文献求助10
2分钟前
TRY发布了新的文献求助10
2分钟前
爆米花应助敏敏9813采纳,获得10
2分钟前
TRY关闭了TRY文献求助
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
桐桐应助章赛采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
章赛完成签到,获得积分10
3分钟前
章赛发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
Vino发布了新的文献求助10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
文艺的听白完成签到 ,获得积分10
5分钟前
斯文的苡完成签到,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
Galri完成签到 ,获得积分10
7分钟前
机智的嘻嘻完成签到 ,获得积分10
7分钟前
Aulalala完成签到,获得积分10
7分钟前
敏敏9813完成签到,获得积分10
8分钟前
8分钟前
敏敏9813发布了新的文献求助10
8分钟前
8分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127221
求助须知:如何正确求助?哪些是违规求助? 4330351
关于积分的说明 13493284
捐赠科研通 4165870
什么是DOI,文献DOI怎么找? 2283646
邀请新用户注册赠送积分活动 1284674
关于科研通互助平台的介绍 1224613