Insights into landslide susceptibility in different karst erosion landforms based on interpretable machine learning

地形地貌 喀斯特 仰角(弹道) 山崩 腐蚀 地质学 水文学(农业) 数字高程模型 自然地理学 地貌学 遥感 地理 岩土工程 几何学 古生物学 数学
作者
Deliang Sun,Jing Wang,Haijia Wen,Yuekai Ding,Qingyu Gu,Jialan Zhang,Fengtai Zhang
出处
期刊:Earth Surface Processes and Landforms [Wiley]
卷期号:49 (3): 1006-1027 被引量:3
标识
DOI:10.1002/esp.5748
摘要

Abstract The aim of the present study was to assess differences in the conditioning factors and the performance of landslide susceptibility mapping (LSM), employing the SHapley Additive exPlanations (SHAP) model to gain profound insights into the intrinsic decision‐making mechanism of LSM in diverse landforms. Two typical karst erosion landforms were selected as the research areas. Based on 15 conditioning factors, LSMs for the two areas were developed using the Bayesian optimization random forest (RF) and eXtreme Gradient Boosting (XGBoost). The SHAP model was used to explore the landslide formation mechanisms from both global and local perspectives. The results show that the area under the curve (AUC) values of the XGBoost models were 0.791 and 0.761, and the AUC values of the RF models were 0.844 and 0.817, in the two different landform areas, respectively. The RF model's accuracy was higher than that of the XGBoost model in both regions. In the low‐elevation hills area, the primary three conditioning factors were identified as slope, topographic relief and distance from the river. Conversely, in the microrelief and mesorelief low mountain area, the predominant conditioning factors were elevation, distance from the river and distance from the road. Both karst landform areas exhibited a high sensitivity to the distance from the river, indicating its significant interaction with other factors contributing to landslide occurrences. Notably, the RF model demonstrated superior performance compared to the XGBoost model, rendering it a more suitable choice for conducting landslide susceptibility mapping research in karst erosion landform areas. In the present study, a comprehensive explanatory framework based on the RF‐SHAP model was proposed, which enables both global and local interpretation of landslides in various karst landscapes. Such an approach explores the intrinsic decision‐making mechanism of the model, enhancing the transparency and realism of landslide susceptibility prediction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随便完成签到,获得积分10
2秒前
朱江涛发布了新的文献求助10
2秒前
3秒前
iconcrete应助Rainbow采纳,获得10
6秒前
小马甲应助feb采纳,获得10
6秒前
科研通AI2S应助纥江采纳,获得10
6秒前
hwezhu发布了新的文献求助10
8秒前
我是老大应助朱江涛采纳,获得10
8秒前
万能图书馆应助费费采纳,获得30
8秒前
su完成签到,获得积分10
9秒前
9秒前
小亮哈哈完成签到,获得积分10
11秒前
栗子完成签到,获得积分10
11秒前
16秒前
bkagyin应助balabala采纳,获得10
16秒前
武元彤发布了新的文献求助10
16秒前
ddding完成签到 ,获得积分10
17秒前
17秒前
CipherSage应助hwezhu采纳,获得10
17秒前
17秒前
bkagyin应助Echo采纳,获得10
17秒前
18秒前
流苏完成签到,获得积分20
18秒前
19秒前
19秒前
慕暖发布了新的文献求助10
20秒前
DZW发布了新的文献求助10
20秒前
21秒前
feb发布了新的文献求助10
22秒前
Cheese发布了新的文献求助10
23秒前
研友_LkKzoL完成签到,获得积分20
23秒前
zyyyy发布了新的文献求助10
25秒前
25秒前
深情安青应助科研通管家采纳,获得10
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
猪猪hero应助科研通管家采纳,获得10
27秒前
星辰大海应助科研通管家采纳,获得10
27秒前
小二郎应助科研通管家采纳,获得10
28秒前
28秒前
JamesPei应助科研通管家采纳,获得10
28秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3117099
求助须知:如何正确求助?哪些是违规求助? 2767036
关于积分的说明 7689541
捐赠科研通 2422396
什么是DOI,文献DOI怎么找? 1286206
科研通“疑难数据库(出版商)”最低求助积分说明 620271
版权声明 599837