Predicting incomplete occlusion of intracranial aneurysms treated with flow diverters using machine learning models

医学 分流器 闭塞 动脉瘤 逻辑回归 随机森林 支持向量机 决策树 栓塞 机器学习 结果(博弈论) 人工智能 放射科 外科 内科学 计算机科学 数学 数理经济学
作者
Bassel Hammoud,Julia El Zini,Mariette Awad,Ahmad Sweid,Stavropoula Tjoumakaris,Pascal Jabbour
出处
期刊:Journal of Neurosurgery [American Association of Neurological Surgeons]
卷期号:: 1-10 被引量:6
标识
DOI:10.3171/2023.9.jns231031
摘要

OBJECTIVE Intracranial saccular aneurysms are vascular malformations responsible for 80% of nontraumatic brain hemorrhage. Recently, flow diverters have been used as a less invasive therapeutic alternative for surgery. However, they fail to achieve complete occlusion after 6 months in 25% of cases. In this study, the authors built a tool, using machine learning (ML), to predict the aneurysm occlusion outcome 6 months after treatment with flow diverters. METHODS A total of 667 aneurysms in 616 patients treated with the Pipeline embolization device at a tertiary referral center between January 2011 and December 2017 were included. To build the predictive tool, two experiments were conducted. In the first experiment, six ML algorithms (support vector machine [SVM], decision tree, random forest [RF], k-nearest neighbor, XGBoost, and CatBoost) were trained using 26 features related to patient risk factors and aneurysm morphological characteristics, and the results were compared with logistic regression (LR) modeling. In the second experiment, the models were trained using the top 10 features extracted by Shapley additive explanation (SHAP) analysis performed on the RF model. RESULTS The results showed that the authors’ tool can better predict the occlusion outcome than LR (accuracy of 89% for the SVM model vs 62% for the LR model), even when trained using a subset of the features (83% accuracy). SHAP analysis revealed that age, hypertension, smoking status, branch vessel involvement, aneurysm neck, and larger diameter dimensions were among the most important features contributing to accurate predictions. CONCLUSIONS In this study, an ML-based tool was developed that successfully predicts outcome in intracranial aneurysms treated with flow diversion, thus helping neurosurgeons to practice a more refined approach and patient-tailored medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
大兵发布了新的文献求助10
3秒前
...完成签到 ,获得积分0
3秒前
汉堡包应助无误采纳,获得10
4秒前
5秒前
小蘑菇应助拜拜采纳,获得10
5秒前
善良的鹏笑完成签到,获得积分10
6秒前
7秒前
狂野的访文完成签到,获得积分10
8秒前
10秒前
11秒前
why发布了新的文献求助10
11秒前
haimianbaobao完成签到 ,获得积分10
12秒前
酷波er应助大兵采纳,获得10
12秒前
YEGE完成签到,获得积分10
14秒前
wonhui发布了新的文献求助10
15秒前
15秒前
无误发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
shenyu发布了新的文献求助10
20秒前
bkagyin应助Michael采纳,获得10
24秒前
24秒前
Ffegrbgbsssgr发布了新的文献求助10
25秒前
do0发布了新的文献求助10
26秒前
研友_Y59785应助勤劳的鸡采纳,获得10
29秒前
难过千易发布了新的文献求助10
29秒前
默默小笼包完成签到,获得积分10
30秒前
兲卷儿完成签到,获得积分10
30秒前
FashionBoy应助shenyu采纳,获得10
31秒前
Ffegrbgbsssgr完成签到,获得积分20
31秒前
温暖白柏发布了新的文献求助10
32秒前
研ZZ完成签到,获得积分10
33秒前
35秒前
35秒前
斯文败类应助欧阳铭采纳,获得10
37秒前
123完成签到,获得积分10
38秒前
40秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075