Predicting incomplete occlusion of intracranial aneurysms treated with flow diverters using machine learning models

医学 分流器 闭塞 动脉瘤 逻辑回归 随机森林 支持向量机 决策树 栓塞 机器学习 结果(博弈论) 人工智能 放射科 外科 内科学 计算机科学 数学 数理经济学
作者
Bassel Hammoud,Julia El Zini,Mariette Awad,Ahmad Sweid,Stavropoula Tjoumakaris,Pascal Jabbour
出处
期刊:Journal of Neurosurgery [American Association of Neurological Surgeons]
卷期号:: 1-10 被引量:6
标识
DOI:10.3171/2023.9.jns231031
摘要

OBJECTIVE Intracranial saccular aneurysms are vascular malformations responsible for 80% of nontraumatic brain hemorrhage. Recently, flow diverters have been used as a less invasive therapeutic alternative for surgery. However, they fail to achieve complete occlusion after 6 months in 25% of cases. In this study, the authors built a tool, using machine learning (ML), to predict the aneurysm occlusion outcome 6 months after treatment with flow diverters. METHODS A total of 667 aneurysms in 616 patients treated with the Pipeline embolization device at a tertiary referral center between January 2011 and December 2017 were included. To build the predictive tool, two experiments were conducted. In the first experiment, six ML algorithms (support vector machine [SVM], decision tree, random forest [RF], k-nearest neighbor, XGBoost, and CatBoost) were trained using 26 features related to patient risk factors and aneurysm morphological characteristics, and the results were compared with logistic regression (LR) modeling. In the second experiment, the models were trained using the top 10 features extracted by Shapley additive explanation (SHAP) analysis performed on the RF model. RESULTS The results showed that the authors’ tool can better predict the occlusion outcome than LR (accuracy of 89% for the SVM model vs 62% for the LR model), even when trained using a subset of the features (83% accuracy). SHAP analysis revealed that age, hypertension, smoking status, branch vessel involvement, aneurysm neck, and larger diameter dimensions were among the most important features contributing to accurate predictions. CONCLUSIONS In this study, an ML-based tool was developed that successfully predicts outcome in intracranial aneurysms treated with flow diversion, thus helping neurosurgeons to practice a more refined approach and patient-tailored medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二二完成签到 ,获得积分10
刚刚
朴实凌旋发布了新的文献求助10
1秒前
无花果应助维克托采纳,获得10
1秒前
1秒前
Lucas应助张嘉慧采纳,获得10
2秒前
2秒前
haohao完成签到,获得积分10
3秒前
3秒前
完美世界应助典雅的听筠采纳,获得10
4秒前
4秒前
yzc发布了新的文献求助10
5秒前
fzzf发布了新的文献求助10
5秒前
xcwy完成签到,获得积分10
6秒前
西罗发布了新的文献求助10
6秒前
启明完成签到,获得积分10
6秒前
疯花血月完成签到,获得积分10
6秒前
烟花应助小高要努力采纳,获得10
6秒前
小懒完成签到,获得积分10
6秒前
7秒前
77完成签到,获得积分10
8秒前
8秒前
活泼的梨愁完成签到,获得积分10
8秒前
大模型应助尔东采纳,获得10
8秒前
nengzou完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
布丁发布了新的文献求助10
10秒前
hh发布了新的文献求助10
10秒前
共享精神应助yzc采纳,获得10
10秒前
FashionBoy应助WNL采纳,获得10
11秒前
丘比特应助ganhykk采纳,获得10
11秒前
11秒前
CodeCraft应助夜安采纳,获得10
12秒前
洋洋发布了新的文献求助10
12秒前
12秒前
XXX完成签到 ,获得积分10
12秒前
格格吉祥发布了新的文献求助30
13秒前
camell发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4949936
求助须知:如何正确求助?哪些是违规求助? 4212921
关于积分的说明 13101954
捐赠科研通 3994719
什么是DOI,文献DOI怎么找? 2186563
邀请新用户注册赠送积分活动 1201758
关于科研通互助平台的介绍 1115197