Predicting incomplete occlusion of intracranial aneurysms treated with flow diverters using machine learning models

医学 分流器 闭塞 动脉瘤 逻辑回归 随机森林 支持向量机 决策树 栓塞 机器学习 结果(博弈论) 人工智能 放射科 外科 内科学 计算机科学 数学 数理经济学
作者
Bassel Hammoud,Julia El Zini,Mariette Awad,Ahmad Sweid,Stavropoula Tjoumakaris,Pascal Jabbour
出处
期刊:Journal of Neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:: 1-10 被引量:6
标识
DOI:10.3171/2023.9.jns231031
摘要

OBJECTIVE Intracranial saccular aneurysms are vascular malformations responsible for 80% of nontraumatic brain hemorrhage. Recently, flow diverters have been used as a less invasive therapeutic alternative for surgery. However, they fail to achieve complete occlusion after 6 months in 25% of cases. In this study, the authors built a tool, using machine learning (ML), to predict the aneurysm occlusion outcome 6 months after treatment with flow diverters. METHODS A total of 667 aneurysms in 616 patients treated with the Pipeline embolization device at a tertiary referral center between January 2011 and December 2017 were included. To build the predictive tool, two experiments were conducted. In the first experiment, six ML algorithms (support vector machine [SVM], decision tree, random forest [RF], k-nearest neighbor, XGBoost, and CatBoost) were trained using 26 features related to patient risk factors and aneurysm morphological characteristics, and the results were compared with logistic regression (LR) modeling. In the second experiment, the models were trained using the top 10 features extracted by Shapley additive explanation (SHAP) analysis performed on the RF model. RESULTS The results showed that the authors’ tool can better predict the occlusion outcome than LR (accuracy of 89% for the SVM model vs 62% for the LR model), even when trained using a subset of the features (83% accuracy). SHAP analysis revealed that age, hypertension, smoking status, branch vessel involvement, aneurysm neck, and larger diameter dimensions were among the most important features contributing to accurate predictions. CONCLUSIONS In this study, an ML-based tool was developed that successfully predicts outcome in intracranial aneurysms treated with flow diversion, thus helping neurosurgeons to practice a more refined approach and patient-tailored medicine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助li采纳,获得10
1秒前
快乐的笙发布了新的文献求助10
1秒前
勤劳母鸡完成签到 ,获得积分10
2秒前
甜甜蜜蜜小白周完成签到 ,获得积分10
2秒前
微笑以南发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
yiding完成签到 ,获得积分10
4秒前
是风动完成签到 ,获得积分10
4秒前
5秒前
zztop完成签到,获得积分10
5秒前
Celia1998完成签到,获得积分10
6秒前
科研通AI6.1应助玲玲采纳,获得10
6秒前
shuyu完成签到,获得积分10
6秒前
曾予嘉完成签到 ,获得积分10
6秒前
6秒前
拉哈80应助Sun采纳,获得20
6秒前
辛巴先生完成签到 ,获得积分10
7秒前
Marlo发布了新的文献求助10
8秒前
8秒前
英吉利25发布了新的文献求助10
9秒前
10秒前
ZH发布了新的文献求助10
11秒前
开心千青发布了新的文献求助10
11秒前
baymin完成签到 ,获得积分10
12秒前
开放的秋玲完成签到,获得积分10
13秒前
13秒前
14秒前
打打应助深情的牛排采纳,获得10
14秒前
li发布了新的文献求助10
15秒前
李健的小迷弟应助Camellia采纳,获得10
15秒前
15秒前
NexusExplorer应助fafafa采纳,获得10
16秒前
18秒前
18秒前
davedavedave完成签到 ,获得积分10
18秒前
Tako发布了新的文献求助10
18秒前
香蕉水云完成签到 ,获得积分10
18秒前
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745613
求助须知:如何正确求助?哪些是违规求助? 5427464
关于积分的说明 15353580
捐赠科研通 4885538
什么是DOI,文献DOI怎么找? 2626776
邀请新用户注册赠送积分活动 1575347
关于科研通互助平台的介绍 1532064