亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transformer-based multimodal feature enhancement networks for multimodal depression detection integrating video, audio and remote photoplethysmograph signals

计算机科学 模式 人工智能 特征提取 模态(人机交互) 特征(语言学) 音频信号 变压器 模式识别(心理学) 语音识别 工程类 哲学 社会学 电气工程 电压 语言学 社会科学 语音编码
作者
Huiting Fan,Xingnan Zhang,Yingying Xu,Jiangxiong Fang,Shiqing Zhang,Xiaoming Zhao,Jun Yu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:104: 102161-102161 被引量:34
标识
DOI:10.1016/j.inffus.2023.102161
摘要

Depression stands as one of the most widespread psychological disorders and has garnered increasing attention. Currently, how to effectively achieve automatic multimodal depression detection for assisting doctors in early diagnosis of depression, has become an important and challenging issue. To address this issue, this work proposes Transformer-based feature enhancement networks for multimodal depression detection. The proposed method effectively integrates three modalities including video, audio and remote photoplethysmographic (rPPG) signals for multimodal depression detection, in which the rPPG modality is introduced as an additional modality for enhancing the effectiveness of multimodal depression detection. The proposed method consists of three key steps: multimodal feature extraction for video, audio and rPPG modalities, Transformer-based multimodal feature enhancement (TMFE), and graph fusion networks (GFN) based multimodal fusion and depression prediction. More specially, in the stage of multimodal feature extraction, for video and audio modalities we employ deep convolutional neural networks (CNN) to extract the corresponding high-level video and audio features, respectively. For rPPG modality, we adopt a short-time end-to-end rPPG estimation framework to extract the rPPG signal values. The TMFE module stacks multiple Transformers such as the inter-modal, intra-modal, and tri-modal Transformers to jointly capture the dynamics and relationships within and between modalities for each time-step of input sequences. The GFN module is designed to effectively fuse the obtained feature representations from different modalities while maintaining the interactions between them simultaneously. Finally, the obtained shared feature representations of all modalities are fed into a multilayer perceptrons (MLP) network to implement final depression detection tasks. Extensive experiments are conducted on two public datasets such as AVEC2013 and AVEC2014, and experimental results demonstrate the validity of the proposed method on depression detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
Esperanza完成签到,获得积分10
2秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
量子星尘发布了新的文献求助10
9秒前
Jokic完成签到,获得积分0
13秒前
23秒前
量子星尘发布了新的文献求助30
31秒前
40秒前
量子星尘发布了新的文献求助30
43秒前
量子星尘发布了新的文献求助10
1分钟前
隐形曼青应助zxcv22100采纳,获得10
1分钟前
1分钟前
1分钟前
zxcv22100发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
郭晴雨发布了新的文献求助20
1分钟前
1分钟前
xiaoxiao发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助30
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666340
求助须知:如何正确求助?哪些是违规求助? 3225374
关于积分的说明 9762863
捐赠科研通 2935270
什么是DOI,文献DOI怎么找? 1607584
邀请新用户注册赠送积分活动 759259
科研通“疑难数据库(出版商)”最低求助积分说明 735188