How to Control Waste Incineration Pollution? Cost-Sharing or Penalty Mechanism—Based on Two Differential Game Models

焚化 微分博弈 机制(生物学) 污染 博弈论 控制(管理) 经济 惩罚法 计算机科学 数学优化 微观经济学 环境科学 废物管理 数学 工程类 人工智能 哲学 生态学 认识论 生物
作者
Huijie Li,Deqing Tan
出处
期刊:Decision Analysis [Institute for Operations Research and the Management Sciences]
卷期号:21 (2): 91-109 被引量:1
标识
DOI:10.1287/deca.2023.0078
摘要

This study explores whether the government should implement a cost-sharing or penalty mechanism to control waste incineration pollution and investigates which policy can best incentivize incineration plants to invest in pollution control. We design two differential game models, one based on a cost-sharing approach and one on a penalty system, to model the interactions between the government and incineration plants. We then compare and analyze the equilibrium outcomes in both scenarios. Our findings reveal that when incineration pollution significantly impacts the government, both the cost-sharing and penalty mechanisms are effective in stimulating incineration plants to enhance their pollution control efforts. However, when incineration pollution significantly affects the incineration plants themselves, the cost-sharing mechanism proves to be more effective in terms of pollution control. Furthermore, we find that the government derives greater utility under the cost-sharing mechanism compared with the penalty mechanism, especially as the amount of municipal solid waste (MSW) increases. In contrast, incineration plants tend to generate higher profits under the cost-sharing mechanism. These findings and their accompanying managerial implications may provide valuable guidance for government agencies in formulating policies to manage incineration pollution and encourage waste incineration plants to invest in improving their pollution control systems. Funding: This work was supported by the National Natural Science Foundation of China [Grant 71571149], Humanities and Social Sciences Foundation for Youth Scholars of Ministry of Education of China [Grant 22YJC630171], and Natural Science Foundation of Sichuan Province of China [Grant 2023NSFSC1055].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChenHan发布了新的文献求助10
1秒前
深情安青应助生气的鸡蛋采纳,获得10
1秒前
1秒前
汉堡包应助li采纳,获得10
1秒前
充电宝应助清脆的书桃采纳,获得10
3秒前
瑾瑜发布了新的文献求助10
3秒前
4秒前
11关注了科研通微信公众号
4秒前
科研通AI2S应助好好学习采纳,获得10
6秒前
6秒前
倔强的大萝卜完成签到,获得积分0
7秒前
kkkkkw发布了新的文献求助10
7秒前
8秒前
此地不宜久刘完成签到,获得积分10
8秒前
wanghuihui完成签到,获得积分20
8秒前
Akim应助君临采纳,获得10
10秒前
Bethune发布了新的文献求助10
10秒前
明@钰发布了新的文献求助10
10秒前
刘奶奶的牛奶完成签到,获得积分10
11秒前
13秒前
14秒前
爆米花应助DANK1NG采纳,获得10
14秒前
可爱的函函应助xgx984采纳,获得10
14秒前
酷波er应助玄叶采纳,获得10
14秒前
深情安青应助xyz采纳,获得10
15秒前
凌柏发布了新的文献求助10
16秒前
科研通AI2S应助小轩窗zst采纳,获得10
16秒前
zeng完成签到,获得积分10
17秒前
吕布骑狗完成签到,获得积分10
17秒前
研友_VZG7GZ应助斯文幻天采纳,获得30
18秒前
王小鸿鸿鸿鸿完成签到,获得积分10
18秒前
18秒前
《子非鱼》完成签到,获得积分10
19秒前
Y哦莫哦莫发布了新的文献求助30
20秒前
Orange应助石狗西采纳,获得10
20秒前
高歌猛进完成签到,获得积分10
21秒前
21秒前
21秒前
赘婿应助机灵的勒采纳,获得10
22秒前
xiaowentu完成签到,获得积分10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297171
求助须知:如何正确求助?哪些是违规求助? 2932698
关于积分的说明 8458339
捐赠科研通 2605362
什么是DOI,文献DOI怎么找? 1422222
科研通“疑难数据库(出版商)”最低求助积分说明 661351
邀请新用户注册赠送积分活动 644565