亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hybrid deep learning model based on parallel architecture TCN-LSTM with Savitzky-Golay filter for wind power prediction

二进制戈莱码 深度学习 人工智能 滤波器(信号处理) 建筑 功率(物理) 计算机科学 算法 物理 地理 计算机视觉 量子力学 考古
作者
Shujun Liu,Tong Xu,Xiaoze Du,Yaocong Zhang,Jiangbo Wu
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:302: 118122-118122 被引量:26
标识
DOI:10.1016/j.enconman.2024.118122
摘要

Wind energy is experiencing rapid global growth. However, wind power generation time series data often exhibit nonlinear and non-stationary characteristics, which make precise estimation challenging. Consequently, wind power prediction assumes an increasingly vital role in the planning and deployment of power and energy systems. Recently, many hybrid deep learning prediction models have been developed to improve the prediction performance of wind power, but their deeper network layer and complex structure also bring higher computing costs and reduced prediction efficiency. In order to achieve higher prediction performance, reduce the complexity and computational cost of hybrid deep learning models, and improve prediction efficiency, this study proposed a hybrid deep learning model based on parallel architecture by using a tensor concatenate module to combine a temporal convolution network (TCN) and a long short-term memory (LSTM) neural network for wind power prediction, and the Savitzky-Golay (SG) filter is used to remove noise and smooth the input wind speed time series in the model training stage. Using a wind turbine case from Turkey, three sets of comparison experiments are conducted. The effectiveness and superiority of the proposed model are validated by comparing a variety of single and hybrid models using current evaluation metrics and the Diebold-Mariano test. Among them, the number of training parameters and computing time of the proposed parallel architecture TCN-LSTM hybrid model are reduced by 6.59% and 25.82%, respectively, when compared to the conventional TCN-LSTM hybrid model with the same hyperparameter settings. nMAE, nMSE, and nRMSE are reduced by 2.00%, 9.21%, and 4.74%, respectively. The Diebold-Mariano test results also reveal that the proposed model performed better in terms of prediction performance. Moreover, the proposed innovative architecture hybrid model provides a novel approach to developing a hybrid model of deep learning networks for wind power prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
压缩完成签到 ,获得积分10
1秒前
2秒前
4秒前
科研小白发布了新的文献求助10
7秒前
怕黑荠应助SHIROKO采纳,获得10
10秒前
研友_VZG7GZ应助科研小白采纳,获得10
21秒前
wlei完成签到,获得积分10
21秒前
顾矜应助努力科研采纳,获得10
22秒前
23秒前
SHIROKO完成签到,获得积分10
28秒前
Milesgao发布了新的文献求助20
38秒前
44秒前
miracle1005发布了新的文献求助10
48秒前
科研小白发布了新的文献求助10
49秒前
大模型应助九黎采纳,获得10
55秒前
点点zzz发布了新的文献求助30
58秒前
坦率的丹烟完成签到 ,获得积分10
58秒前
hesurina完成签到,获得积分10
1分钟前
复杂的泥猴桃完成签到,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
Ava应助点点zzz采纳,获得10
1分钟前
科研通AI5应助科研小白采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
九黎发布了新的文献求助10
1分钟前
Akim应助yyyy采纳,获得10
1分钟前
webmaster完成签到,获得积分10
1分钟前
1分钟前
科研小白发布了新的文献求助10
1分钟前
噔噔完成签到,获得积分10
1分钟前
大英留子千早爱音完成签到,获得积分10
1分钟前
1分钟前
慕青应助科研小白采纳,获得10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
愉快凡旋发布了新的文献求助10
1分钟前
1分钟前
2分钟前
科研小白发布了新的文献求助10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135509
关于积分的说明 9412416
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716865