Parameters optimum of multiple underframe suspended equipment on high-speed railway vehicle carbody vibration control by using an improved genetic algorithm

振动 工程类 结构工程 遗传算法 过程(计算) 刚度 计算机科学 声学 物理 机器学习 操作系统
作者
Qunsheng Wang,Jing Zeng,Rancheng Mao,Xuesong Jiang
出处
期刊:Journal of Vibration and Control [SAGE]
被引量:1
标识
DOI:10.1177/10775463231225552
摘要

Carbody vibration control and ride comfort improvement are important research parts of high-speed railway vehicle dynamic. The effectiveness of utilizing carbody underframe suspended equipment as dynamic vibration absorbers for carbody vibration suppression has been validated. While previous research has focused mainly on a single suspended equipment without considering its vibration tolerance, a balance must be struck between reducing carbody vibration and maintaining equipment performance. To address the challenging, a multi-objective and multi-parameter optimization method is employed, integrating an improved niche genetic algorithm (INGA) into the numerical simulation process. Considering carbody flexible and multi-suspended equipment, a rigid-flexible dynamics model of a high-speed railway vehicle is established and validated on a vehicle dynamics test rig. Based on the numerical analysis, the optimal parameter combination of the stiffness and the longitudinal installation position is obtained from an evaluation function that comprehensively assesses the vibration performance of both the vehicle carbody and the equipment. Comparative analysis between the results obtained from the optimal and primitive parameters demonstrates that the optimization process not only achieves significant improvements in carbody vibration reduction but also effectively controls equipment vibration within reasonable limits. The multi-objective and multi-parameter optimization method applied on carbody underframe suspended system proves to be valuable in improving the dynamic performance of high-speed railway vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Pauline完成签到,获得积分10
5秒前
jackie发布了新的文献求助10
5秒前
笨笨摇伽发布了新的文献求助10
7秒前
科目三应助皓月繁星采纳,获得10
7秒前
tomato完成签到,获得积分20
9秒前
CodeCraft应助缘一采纳,获得10
10秒前
小二郎应助刘铭晨采纳,获得10
10秒前
10秒前
大个应助风雨1210采纳,获得10
10秒前
一壶清酒完成签到,获得积分10
10秒前
11秒前
tomato发布了新的文献求助30
12秒前
陈莹发布了新的文献求助10
13秒前
14秒前
14秒前
小狗同志006完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
皓月繁星完成签到,获得积分10
15秒前
ZeJ发布了新的文献求助10
16秒前
16秒前
17秒前
usrcu完成签到 ,获得积分10
17秒前
122x应助赖道之采纳,获得10
18秒前
厉不厉害你坤哥完成签到,获得积分10
18秒前
wuzhizhiya发布了新的文献求助10
19秒前
19秒前
19秒前
皓月繁星发布了新的文献求助10
20秒前
20秒前
迷路白桃发布了新的文献求助20
20秒前
ZeJ完成签到,获得积分10
21秒前
景别发布了新的文献求助10
21秒前
21秒前
NexusExplorer应助陈莹采纳,获得10
22秒前
GXY发布了新的文献求助10
22秒前
嘟嘟发布了新的文献求助10
23秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808