Multiple programmed cell death patterns and immune landscapes in bladder cancer: Evidence based on machine learning and multi‐cohorts

比例危险模型 小桶 列线图 膀胱癌 肿瘤科 多元统计 生物 单变量 接收机工作特性 生存分析 多元分析 内科学 癌症 生物信息学 医学 转录组 基因 机器学习 计算机科学 遗传学 基因表达
作者
Z. Li,Yong Li,Li Liu,Chiteng Zhang,Xiucheng Li
出处
期刊:Environmental Toxicology [Wiley]
卷期号:39 (3): 1780-1801 被引量:2
标识
DOI:10.1002/tox.24066
摘要

Abstract Background Bladder cancer (BLCA) is the most prevalent malignant neoplasm of the urinary tract, and ranks seventh as the most frequent systemic neoplasm in males. Dysregulation of programmed cell death (PCD) has been implicated in various stages of cancer progression, including tumorigenesis, invasion, and metastasis. However, the correlation between multiple PCD modes and BLCA is lacking. Thus, a risk prediction model was built based on 12 models of PCD to predict prognosis and immunotherapy response in patients with BLCA. Methods The RNA sequencing transcriptome data of BLCA were collected from the Cancer Genome Atlas Program (TCGA) and GEO datasets. Univariate Cox and LASSO regression analyzes were performed to identify PCD‐related genes (PCDRGs) significant for prognosis. Multivariate Cox regression analysis was used to develop a prognostic model for PCD. Survival analysis and chi‐squared test were employed to analyze the survival variations between different risk groups. Univariate and multivariate Cox analyses were performed to evaluate the model as an independent prognostic predictor. A nomogram was formulated using both clinical data and the model to predict the survival rates of BLCA patients. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were performed to analyze and elucidate the molecular mechanisms and pathways operating within different risk score groups. Furthermore, the immune landscape was investigated and the efficacy of various anti‐tumor drugs was evaluated for BLCA. Finally, consensus clustering analysis was adopted to explore the association between different PCD clusters and clinical characteristics. Results Assessment of the public datasets and multivariate Cox analysis yielded 1254 PCDRGs, of which 10 PCDRGs for BLCA were identified. Based on the PCDRGs, a prognostic model was built for BLCA patient prognosis. Compared with the low‐risk group, the high‐risk group had a poorer prognosis. The model predicted area under the curve (AUC) values of 0.751, 0.753, and 0.763, respectively, for 1‐, 3‐, and 5‐year survival of BLCA patients. The nomogram further demonstrated the credibility of the prognosis model. The low‐risk group patients exhibited lower TIDE scores and higher TMB scores, implying better response of the low‐risk group to immunotherapy. The consensus clustering analysis indicated that compared with PCD cluster A, PCD cluster B was significantly more expressed in PCDRGs, suggesting a closer relation of PCD cluster B to PCDRGs. Patients in PCD cluster B had lower risk scores. Conclusion To summarize, the effects of 12 PCD patterns on BLCA were synthesized and the correlation between PCD and BLCA was explored. These findings provide new and convincing evidence for individualized treatment of BLCA, and help guide the treatment strategy and improve the prognosis of BLCA patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
didi发布了新的文献求助10
刚刚
俭朴听双完成签到,获得积分10
1秒前
xxx完成签到 ,获得积分10
1秒前
dong发布了新的文献求助10
2秒前
3秒前
子春末发布了新的文献求助10
5秒前
LiWeipeng完成签到,获得积分10
12秒前
泡芙发布了新的文献求助10
16秒前
哈哈哈哈完成签到 ,获得积分10
16秒前
浮游应助dong采纳,获得10
18秒前
不懂QM的薛定谔猫完成签到,获得积分10
21秒前
KBRS完成签到 ,获得积分10
22秒前
23秒前
27秒前
pliciyir发布了新的文献求助10
28秒前
halona完成签到,获得积分10
28秒前
29秒前
liaoxinghui完成签到,获得积分20
30秒前
刘Liam完成签到 ,获得积分10
33秒前
李健的小迷弟应助glay采纳,获得10
33秒前
hy发布了新的文献求助10
34秒前
liaoxinghui发布了新的文献求助10
34秒前
凉兮发布了新的文献求助30
35秒前
泡芙完成签到,获得积分10
37秒前
37秒前
222完成签到,获得积分10
38秒前
38秒前
hh完成签到,获得积分10
40秒前
却之不恭6253完成签到,获得积分10
41秒前
凉兮完成签到,获得积分10
42秒前
222发布了新的文献求助10
43秒前
palace完成签到,获得积分10
44秒前
46秒前
47秒前
49秒前
脑洞疼应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
乐乐应助科研通管家采纳,获得10
49秒前
xccpp应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得30
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645588
关于积分的说明 14675693
捐赠科研通 4586757
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460969