已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiple programmed cell death patterns and immune landscapes in bladder cancer: Evidence based on machine learning and multi‐cohorts

比例危险模型 小桶 列线图 膀胱癌 肿瘤科 多元统计 生物 单变量 接收机工作特性 生存分析 多元分析 内科学 癌症 生物信息学 医学 转录组 基因 机器学习 计算机科学 遗传学 基因表达
作者
Z. Li,Yong Li,Li Liu,Chiteng Zhang,Xiucheng Li
出处
期刊:Environmental Toxicology [Wiley]
卷期号:39 (3): 1780-1801 被引量:2
标识
DOI:10.1002/tox.24066
摘要

Abstract Background Bladder cancer (BLCA) is the most prevalent malignant neoplasm of the urinary tract, and ranks seventh as the most frequent systemic neoplasm in males. Dysregulation of programmed cell death (PCD) has been implicated in various stages of cancer progression, including tumorigenesis, invasion, and metastasis. However, the correlation between multiple PCD modes and BLCA is lacking. Thus, a risk prediction model was built based on 12 models of PCD to predict prognosis and immunotherapy response in patients with BLCA. Methods The RNA sequencing transcriptome data of BLCA were collected from the Cancer Genome Atlas Program (TCGA) and GEO datasets. Univariate Cox and LASSO regression analyzes were performed to identify PCD‐related genes (PCDRGs) significant for prognosis. Multivariate Cox regression analysis was used to develop a prognostic model for PCD. Survival analysis and chi‐squared test were employed to analyze the survival variations between different risk groups. Univariate and multivariate Cox analyses were performed to evaluate the model as an independent prognostic predictor. A nomogram was formulated using both clinical data and the model to predict the survival rates of BLCA patients. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were performed to analyze and elucidate the molecular mechanisms and pathways operating within different risk score groups. Furthermore, the immune landscape was investigated and the efficacy of various anti‐tumor drugs was evaluated for BLCA. Finally, consensus clustering analysis was adopted to explore the association between different PCD clusters and clinical characteristics. Results Assessment of the public datasets and multivariate Cox analysis yielded 1254 PCDRGs, of which 10 PCDRGs for BLCA were identified. Based on the PCDRGs, a prognostic model was built for BLCA patient prognosis. Compared with the low‐risk group, the high‐risk group had a poorer prognosis. The model predicted area under the curve (AUC) values of 0.751, 0.753, and 0.763, respectively, for 1‐, 3‐, and 5‐year survival of BLCA patients. The nomogram further demonstrated the credibility of the prognosis model. The low‐risk group patients exhibited lower TIDE scores and higher TMB scores, implying better response of the low‐risk group to immunotherapy. The consensus clustering analysis indicated that compared with PCD cluster A, PCD cluster B was significantly more expressed in PCDRGs, suggesting a closer relation of PCD cluster B to PCDRGs. Patients in PCD cluster B had lower risk scores. Conclusion To summarize, the effects of 12 PCD patterns on BLCA were synthesized and the correlation between PCD and BLCA was explored. These findings provide new and convincing evidence for individualized treatment of BLCA, and help guide the treatment strategy and improve the prognosis of BLCA patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
受伤筝完成签到 ,获得积分10
2秒前
深情安青应助科研通管家采纳,获得10
3秒前
A_KAI应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
Novoa应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
成就凡双应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
Hello应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得30
3秒前
4秒前
4秒前
4秒前
六六完成签到 ,获得积分10
5秒前
谦让溪流发布了新的文献求助10
6秒前
6秒前
香蕉觅云应助仲夏夜之梦采纳,获得10
7秒前
7秒前
镜哥完成签到,获得积分10
7秒前
manon完成签到 ,获得积分10
9秒前
Davidjin发布了新的文献求助30
10秒前
在水一方应助靖旎采纳,获得10
10秒前
旷意发布了新的文献求助10
10秒前
小李完成签到 ,获得积分10
11秒前
12秒前
QAQ完成签到 ,获得积分10
12秒前
伶俐的谷丝完成签到 ,获得积分10
13秒前
14秒前
srx完成签到 ,获得积分10
15秒前
17秒前
17秒前
dddddd发布了新的文献求助10
19秒前
fredericev发布了新的文献求助10
20秒前
谦让溪流完成签到,获得积分10
20秒前
21秒前
小太阳完成签到,获得积分10
21秒前
微课发布了新的文献求助10
22秒前
哈登完成签到 ,获得积分10
23秒前
执着的似狮完成签到 ,获得积分10
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705395
求助须知:如何正确求助?哪些是违规求助? 5163352
关于积分的说明 15245053
捐赠科研通 4859251
什么是DOI,文献DOI怎么找? 2607656
邀请新用户注册赠送积分活动 1558822
关于科研通互助平台的介绍 1516347