Continuous manufacturing of pharmaceutical products: A density-insensitive near infrared method for the in-line monitoring of continuous powder streams

近红外光谱 过程分析技术 稳健性(进化) 校准 体积流量 材料科学 生物系统 标准差 医药制造业 实验设计 工艺变化 工艺工程 分析化学(期刊) 过程(计算) 计算机科学 数学 统计 化学 在制品 机械 色谱法 光学 工程类 业务 营销 生物化学 物理 操作系统 基因 生物 生物信息学
作者
Natasha L. Velez-Silva,James K. Drennen,Carl A. Anderson
出处
期刊:International Journal of Pharmaceutics [Elsevier]
卷期号:650: 123699-123699 被引量:5
标识
DOI:10.1016/j.ijpharm.2023.123699
摘要

Near infrared (NIR) spectroscopy is a valuable analytical technique for monitoring chemical composition of powder blends in continuous pharmaceutical processes. However, the variation in density captured by NIR during spectral collection of dynamic powder streams at different flow rates often reduces the performance and robustness of NIR models. To overcome this challenge, quantitative NIR measurements are commonly collected across all potential manufacturing conditions, including multiple flow rates to account for the physical variations. The utility of this approach is limited by the considerable quantity of resources required to run and analyze an extensive calibration design at variable flow rates in a continuous manufacturing (CM) process. It is hypothesized that the primary variation introduced to NIR spectra from changing flow rates is a change in the density of the powder from which NIR spectra are collected. In this work, powder stream density was used as an efficient surrogate for flow rate in developing a quantitative NIR method with enhanced robustness against process rate variation. A density design space of two process parameters was generated to determine the conditions required to encompass the apparent density and spectral variance from increases in process rate. This apparent density variance was included in calibration at a constant low flow rate to enable the development of a density-insensitive NIR quantitative model with limited consumption of materials. The density-insensitive NIR model demonstrated comparable prediction performance and flow rate robustness to a traditional NIR model including flow rate variation ("gold standard" model) when applied to monitoring drug content in continuous runs at varying flow rates. The proposed platform for the development of in-line density-insensitive NIR methods is expected to facilitate robust analytical model performance across variable continuous manufacturing production scales while improving the material efficiency over traditional robust modeling approaches for calibration development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冯雅婷完成签到 ,获得积分10
刚刚
1秒前
1秒前
欣喜谷槐完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
小白鼠完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
科研通AI6应助Fortune采纳,获得10
3秒前
DrLee发布了新的文献求助10
4秒前
搞怪半烟完成签到,获得积分10
4秒前
害怕的惜文完成签到,获得积分10
4秒前
wlnhyF完成签到,获得积分10
4秒前
5秒前
mhpvv完成签到,获得积分10
5秒前
5秒前
东新发布了新的文献求助10
5秒前
王帅发布了新的文献求助10
5秒前
SciGPT应助YZQ采纳,获得10
6秒前
6秒前
7秒前
HOla完成签到,获得积分10
7秒前
小马甲应助邓茗予采纳,获得10
8秒前
科研通AI6应助月星采纳,获得10
8秒前
张瑜发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
11秒前
张晓祁发布了新的文献求助100
11秒前
调皮的灰狼完成签到,获得积分10
12秒前
12秒前
13秒前
液氧发布了新的文献求助10
13秒前
NANA完成签到,获得积分10
14秒前
小青椒应助happy采纳,获得50
14秒前
14秒前
加贺完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802