Dynamic System Modeling Using a Multisource Transfer Learning-Based Modular Neural Network for Industrial Application

模块化设计 人工神经网络 计算机科学 学习迁移 模块化神经网络 人工智能 控制工程 工程类 时滞神经网络 操作系统
作者
Haoshan Duan,Xi Meng,Jian Tang,Junfei Qiao
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 7173-7182
标识
DOI:10.1109/tii.2023.3342896
摘要

Establishing an accurate model of dynamic systems poses a challenge for complex industrial processes. Due to the ability to handle complex tasks, modular neural networks (MNN) have been widely applied to industrial process modeling. However, the phenomenon of domain drift caused by operating conditions may lead to a cold start of the model, which affects the performance of MNN. For this reason, a multisource transfer learning-based MNN (MSTL-MNN) is proposed in this study. First, the knowledge-driven transfer learning process is performed with domain similarity evaluation, knowledge extraction, and fusion, aiming to form an initial subnetwork in the target domain. Then, the positive transfer process of effective knowledge can avoid the cold start problem of MNN. Second, during the data-driven fine-tuning process, a regularized self-organizing long short-term memory algorithm is designed to fine-tune the structure and parameters of the initial subnetwork, which can improve the prediction performance of MNN. Meanwhile, relevant theoretical analysis is given to ensure the feasibility of MSTL-MNN. Finally, the effectiveness of the proposed method is confirmed by two benchmark simulations and a real industrial dataset of a municipal solid waste incineration process. Experimental results demonstrate the merits of MSTL-MNN for industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧心的从蓉完成签到,获得积分10
1秒前
1秒前
李希妍完成签到,获得积分10
2秒前
迪克牛仔完成签到 ,获得积分10
2秒前
Jasper应助精明寻梅采纳,获得10
3秒前
米线儿完成签到,获得积分10
4秒前
甜桃完成签到,获得积分10
4秒前
4秒前
5秒前
CAOHOU应助q792309106采纳,获得10
5秒前
6秒前
6秒前
悦耳静枫发布了新的文献求助10
8秒前
烟花应助果粒多采纳,获得10
8秒前
潘善若发布了新的文献求助10
9秒前
廉凌波发布了新的文献求助10
9秒前
赘婿应助crazy采纳,获得10
9秒前
喻义梅关注了科研通微信公众号
10秒前
精明寻梅完成签到,获得积分10
10秒前
行远完成签到,获得积分10
11秒前
科目三应助感动黄豆采纳,获得10
12秒前
xueyu发布了新的文献求助10
12秒前
钱宇成完成签到,获得积分20
13秒前
修道院的豌豆完成签到,获得积分10
13秒前
廉凌波完成签到,获得积分10
14秒前
Rondab应助行远采纳,获得10
16秒前
16秒前
SYLH应助showmaker采纳,获得20
17秒前
17秒前
领导范儿应助FXQ123_范采纳,获得10
17秒前
Afaq完成签到,获得积分20
18秒前
油饼发布了新的文献求助30
20秒前
潘善若发布了新的文献求助10
20秒前
ganxinran发布了新的文献求助10
20秒前
22秒前
22秒前
24秒前
果粒多发布了新的文献求助10
27秒前
可爱的函函应助大刘采纳,获得10
28秒前
Rondab应助q792309106采纳,获得10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136