EEG-Based Evaluation of Aesthetic Experience Using BiLSTM Network

脑电图 价(化学) 唤醒 计算机科学 人工智能 认知心理学 心理学 社会心理学 物理 量子力学 精神科
作者
Peishan Wang,Haibei Feng,Xiaobing Du,Rui Nie,Yudi Lin,Cuixia Ma,Liang Zhang
出处
期刊:International Journal of Human-computer Interaction [Taylor & Francis]
卷期号:: 1-14 被引量:2
标识
DOI:10.1080/10447318.2023.2278926
摘要

Evaluation of aesthetic design fulfills a pivotal function in product development, which urges for an efficacious objective method to measure customers' experience. The stability and effectiveness of electroencephalography (EEG) make it a suitable tool for aesthetic experience measurement. Nevertheless, existing studies have several limitations, especially regarding the stimuli and the algorithm. The potential of an EEG-based deep learning model has not been verified in pinpointing subtle differences in physical product aesthetics. To fill the research gap in this issue, we recorded EEG signals in real-life scenarios when participants were presented with different types of physical smartphones, and asked participants to rate them from four dimensions of aesthetic experience (arousal, valence, likeness, and aesthetic evaluation). Then, the time–frequency data were fed into a spatial feature extraction network and an attention-based bidirectional long short-term memory (BiLSTM) optimized by the cross-entropy loss function. The result showed that at 16s window size, the four outcome models yielded the best joint recognition performance of aesthetic experience with an average accuracy of over 85% (arousal: 88.10%, valence: 87.97%, likeness: 85.99%, and aesthetic evaluation: 87.23%). It provides an objective cross-subject recognition method with multi-faceted evaluation results of aesthetic experience. Additionally, we verified the ability of EEG as a reliable and informative resource in terms of aesthetic experience evaluation, even with subtle differences. More practically, a future direction of incorporating EEG signals into subjective product aesthetics measurement could be given more credit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助京客家采纳,获得10
刚刚
锐猪仔关注了科研通微信公众号
1秒前
风起青禾完成签到,获得积分10
1秒前
2秒前
方大完成签到,获得积分10
2秒前
marketing完成签到,获得积分10
2秒前
xiaoputaor完成签到 ,获得积分10
3秒前
雅婷发布了新的文献求助10
3秒前
追寻紫安发布了新的文献求助10
3秒前
3秒前
小太阳完成签到,获得积分10
4秒前
wanci应助VDC采纳,获得10
5秒前
如约而至发布了新的文献求助10
5秒前
anyone完成签到,获得积分10
5秒前
拉布拉卡完成签到,获得积分20
5秒前
Maria完成签到 ,获得积分10
5秒前
5秒前
彼岸完成签到,获得积分10
6秒前
Veronica发布了新的文献求助10
7秒前
万能图书馆应助KANG采纳,获得10
7秒前
英姑应助ZJU采纳,获得10
7秒前
灵巧荆发布了新的文献求助10
8秒前
8秒前
两棵大白菜完成签到,获得积分10
9秒前
华仔应助追寻紫安采纳,获得10
9秒前
10秒前
11秒前
dd完成签到 ,获得积分10
11秒前
戒赌麻将完成签到,获得积分10
11秒前
xyz2001122发布了新的文献求助10
12秒前
77发布了新的文献求助20
12秒前
huohuo完成签到,获得积分20
12秒前
13秒前
希望天下0贩的0应助nito采纳,获得10
13秒前
西番雅发布了新的文献求助10
13秒前
丘比特应助薯愿采纳,获得10
14秒前
云海老完成签到,获得积分10
15秒前
siqilinwillbephd完成签到,获得积分10
16秒前
Ava应助CHENGJIAO采纳,获得10
16秒前
xiaohe应助xiaobai采纳,获得10
16秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Oribatid mites in Burmese amber I. First record of the family Achipteriidae (Acariformes, Oribatida) in Cretaceous amber, with the description of a new species of Cerachipteria Grandjean, 1935 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725821
求助须知:如何正确求助?哪些是违规求助? 3270855
关于积分的说明 9969218
捐赠科研通 2986238
什么是DOI,文献DOI怎么找? 1638149
邀请新用户注册赠送积分活动 777978
科研通“疑难数据库(出版商)”最低求助积分说明 747365