生物炭
双金属片
恩诺沙星
吸附
化学
核化学
氧化物
环境化学
无机化学
化学工程
热解
有机化学
环丙沙星
金属
生物化学
工程类
抗生素
作者
Guodong Hong,Rui Shan,Jing Gu,Taoli Huhe,Haoran Yuan,Yong Chen
标识
DOI:10.1016/j.jece.2024.112208
摘要
This study employed an iron/zinc bimetallic oxide co-precipitation method to prepare magnetic areca nut husk biochar under nitrogen conditions at 650 °C and investigated its adsorption performance towards enrofloxacin (ENR). Characterization analysis indicates that the specific surface area (1475.35 m2·g−1) and total pore volume (0.71 cm3·g−1) of areca nut husk biochar modified by iron/zinc bimetallic oxide (ZFBC) are significantly greater than those of unmodified areca nut husk biochar (BC). Batch adsorption experiments demonstrated that ZFBC displayed strong removal capabilities for ENR over a broad pH range (3−11), with a maximum adsorption capacity of 198.13 mg·g−1 at 303 K and pH=9, which is nine times higher than BC. In the presence of various competing ions within the concentration range of 0–100 mmol·L−1, the removal efficiency of ENR exceeded 80%. In addition, in adsorption experiments with pig wastewater synthesized in different matrices, ZFBC exhibited an adsorption capacity for ENR (at a concentration of 100 mg·g−1) exceeding 89 mg·g−1. Adsorption behavior conformed to a pseudo-second-order kinetic model and Freundlich isotherm model. In addition, the change in enthalpy (ΔH) of the adsorption was 43.313 kJ·mol−1, indicating primarily physical adsorption. The adsorption mechanisms of ENR on ZFBC encompassed pore filling, π-π conjugation, electrostatic interactions, hydrogen bonding, and functional group complexation. This study demonstrates the potential of areca nut husk as a promising biochar source for the removal of ENR.
科研通智能强力驱动
Strongly Powered by AbleSci AI