Leveraging machine learning to dissect role of combinations of amino acids in modulating the effect of zinc on mammalian cell growth

氨基酸 天冬酰胺 生物化学 脯氨酸 色氨酸 谷氨酰胺 天冬氨酸 苏氨酸 生物 化学 丝氨酸 有机化学
作者
Ujjiti Pandey,Indrani Madhugiri,Chetan Gadgil,Mugdha Gadgil
出处
期刊:Biotechnology Progress [Wiley]
卷期号:40 (3)
标识
DOI:10.1002/btpr.3436
摘要

Abstract Although the contributions of individual components of cell culture media are largely known, their combinatorial effects are far less understood. Experiments varying one component at a time cannot identify combinatorial effects, and analysis of the large number of experiments required to decipher such effects is challenging. Machine learning algorithms can help in the analysis of such datasets to identify multi‐component interactions. Zinc toxicity in vitro is known to change depending on amino acid concentration in the extracellular medium. Multiple amino acids are known to be involved in this protection. Thirty‐two amino acid compositions were formulated to evaluate their effect on the growth of CHO cells under high zinc conditions. A sequential machine learning analysis methodology was used, which led to the identification of a set of amino acids (threonine, proline, glutamate, aspartate, asparagine, and tryptophan) contributing to protection from zinc. Our results suggest that a decrease in availability of these set of amino acids due to consumption may affect cell growth in media formulated with high zinc concentrations, and in contrast, normal levels of these amino acids are associated with better tolerance to high zinc concentration. Our sequential analysis method may be similarly employed for high throughput medium design and optimization experiments to identify interactions among a large number of cell culture medium components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助加油采纳,获得10
刚刚
Hello paper应助lx采纳,获得10
刚刚
bkagyin应助Dou采纳,获得10
1秒前
1秒前
nbxszhang完成签到,获得积分20
1秒前
早123完成签到 ,获得积分10
2秒前
wangdunli发布了新的文献求助10
2秒前
ooh完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
xiaoding发布了新的文献求助10
4秒前
一一完成签到,获得积分10
5秒前
6秒前
ll完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
walden完成签到,获得积分10
8秒前
wangdunli完成签到,获得积分10
8秒前
kyukyubiu发布了新的文献求助10
8秒前
9秒前
9秒前
zzy完成签到,获得积分10
9秒前
10秒前
smash发布了新的文献求助10
10秒前
JamesPei应助又又采纳,获得10
11秒前
sm完成签到 ,获得积分10
11秒前
11秒前
脑洞疼应助党贵卿采纳,获得10
11秒前
11秒前
加油完成签到,获得积分10
11秒前
amber发布了新的文献求助10
12秒前
LO7pM2完成签到,获得积分10
12秒前
斯文败类应助下课了吧采纳,获得10
13秒前
爆米花应助辣味锅包肉采纳,获得10
13秒前
失重心跳完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3582264
求助须知:如何正确求助?哪些是违规求助? 3151751
关于积分的说明 9489358
捐赠科研通 2853956
什么是DOI,文献DOI怎么找? 1568974
邀请新用户注册赠送积分活动 734850
科研通“疑难数据库(出版商)”最低求助积分说明 720884