Structural Transformation of Coassembled Fmoc-Protected Aromatic Amino Acids to Nanoparticles

材料科学 超分子化学 纳米纤维 自组装 生物分子 氨基酸 芳香族氨基酸 氢键 纳米技术 色氨酸 纳米颗粒 分子 纳米载体 组合化学 化学 有机化学 生物化学
作者
Tengfei Wang,Cécilia Ménard‐Moyon,Alberto Bianco
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (8): 10532-10544 被引量:2
标识
DOI:10.1021/acsami.3c18463
摘要

Materials made of assembled biomolecules such as amino acids have drawn much attention during the past decades. Nevertheless, research on the relationship between the chemical structure of building block molecules, supramolecular interactions, and self-assembled structures is still necessary. Herein, the self-assembly and the coassembly of fluorenylmethoxycarbonyl (Fmoc)-protected aromatic amino acids (tyrosine, tryptophan, and phenylalanine) were studied. The individual self-assembly of Fmoc-Tyr-OH and Fmoc-Phe-OH in water formed nanofibers, while Fmoc-Trp-OH self-assembled into nanoparticles. Moreover, when Fmoc-Tyr-OH or Fmoc-Phe-OH was coassembled with Fmoc-Trp-OH, the nanofibers were transformed into nanoparticles. UV–vis spectroscopy, Fourier transform infrared spectroscopy, and fluorescence spectroscopy were used to investigate the supramolecular interactions leading to the self-assembled architectures. π–π stacking and hydrogen bonding were the main driving forces leading to the self-assembly of Fmoc-Tyr-OH and Fmoc-Phe-OH forming nanofibers. Further, a mechanism involving a two-step coassembly process is proposed based on nucleation and elongation/growth to explain the structural transformation. Fmoc-Trp-OH acted as a fiber inhibitor to alter the molecular interactions in the Fmoc-Tyr-OH or Fmoc-Phe-OH self-assembled structures during the coassembly process, locking the coassembly in the nucleation step and preventing the formation of nanofibers. This structural transformation is useful for extending the application of amino acid self- or coassembled materials in different fields. For example, the amino acids forming nanofibers could be applied for tissue engineering, while they could be exploited as drug nanocarriers when they form nanoparticles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助qqq采纳,获得10
1秒前
Menand发布了新的文献求助10
2秒前
5秒前
7秒前
BCKT完成签到,获得积分10
7秒前
7秒前
8秒前
斯文败类应助半夏采纳,获得10
9秒前
星辰大海应助清秀曼彤采纳,获得10
10秒前
Orange应助冷静的小虾米采纳,获得10
11秒前
好好科研~完成签到 ,获得积分10
11秒前
研友_VZG7GZ应助别凡采纳,获得10
12秒前
虾米发布了新的文献求助10
13秒前
碎尘发布了新的文献求助10
13秒前
13秒前
Ava应助雪菜采纳,获得10
15秒前
廉凌波发布了新的文献求助10
15秒前
忧伤的真菌完成签到 ,获得积分10
15秒前
小二郎应助科研通管家采纳,获得10
16秒前
良辰应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
良辰应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
良辰应助科研通管家采纳,获得10
17秒前
852应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
miles发布了新的文献求助10
17秒前
Melody完成签到,获得积分10
18秒前
糊涂涂完成签到,获得积分10
19秒前
cocolu应助廉凌波采纳,获得10
19秒前
20秒前
21秒前
21秒前
斯文败类应助Tracy采纳,获得10
22秒前
幽默的月光完成签到,获得积分10
23秒前
szz完成签到,获得积分10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316498
求助须知:如何正确求助?哪些是违规求助? 2948223
关于积分的说明 8539677
捐赠科研通 2624118
什么是DOI,文献DOI怎么找? 1435867
科研通“疑难数据库(出版商)”最低求助积分说明 665703
邀请新用户注册赠送积分活动 651634