A convex multi-objective distributionally robust optimization for embedded electricity and natural gas distribution networks under smart electric vehicle fleets

需求响应 稳健优化 天然气 调度(生产过程) 灵活性(工程) 计算机科学 可再生能源 数学优化 智能电网 最优化问题 凸优化 汽车工程 工程类 运筹学 正多边形 电气工程 运营管理 几何学 统计 数学 废物管理 算法
作者
Nima Nasiri,Saeed Zeynali,Sajad Najafi Ravadanegh,Sylvain Kubler,Yves Le Traon
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:434: 139843-139843 被引量:3
标识
DOI:10.1016/j.jclepro.2023.139843
摘要

The indisputable environmental concerns have forced the imminent proliferation of renewable energy sources (RES) and electric vehicles (EV). However, the high penetration of such uncertain and variable sources, can pose significant challenges for maintaining supply–demand balance in electrical distribution networks (EDNs). To address these challenges, this paper presents a distributionally robust optimization (DRO) method for multi-objective scheduling in integrated electricity and natural gas distribution networks (IENGDNs). The proposed approach aims to minimize environmental-economic objectives while taking into account the high penetration of EVs and RESs. The impact of a smart EV charging strategy is evaluated to reduce operating costs and maximize the use of RESs. Additionally, demand response programs (DRPs) are used in the EDN to prevent overlapping of peak load hours between the EDN and natural gas distribution network (NGDN). Linepack technology is also used to store natural gas in NGDN pipelines, which increases the short-term flexibility of the entire IENGDNs. The proposed problem is mathematically structured as a second-order conical programming (SOCP) model to benefit from the reliable and efficient convex optimization solution. The simulations were conducted on a 123-EDN and a 40-NGDN systems. Different simulation cases show that the proposed economic-environmental framework can bring down the total emissions by 10.02%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助樱桃小王子采纳,获得10
刚刚
Orange应助薛定谔的猫采纳,获得30
1秒前
1秒前
2秒前
我是老大应助Eric采纳,获得10
4秒前
独摇之发布了新的文献求助10
4秒前
阔达的无剑应助溴氧铋采纳,获得20
4秒前
CoNor发布了新的文献求助10
7秒前
7秒前
韩涵发布了新的文献求助10
11秒前
11秒前
zhonghy0219完成签到,获得积分10
12秒前
lixy完成签到 ,获得积分10
12秒前
来自三百完成签到,获得积分10
13秒前
简单寻冬完成签到 ,获得积分10
15秒前
everglow发布了新的文献求助30
16秒前
情怀应助sean采纳,获得10
17秒前
18秒前
CoNor完成签到,获得积分10
18秒前
lsc完成签到,获得积分10
18秒前
落小兜完成签到,获得积分20
19秒前
19秒前
20秒前
FashionBoy应助坦率的跳跳糖采纳,获得10
20秒前
21秒前
21秒前
JamesPei应助zhangxin采纳,获得10
21秒前
小期待完成签到 ,获得积分10
22秒前
8R60d8应助科研通管家采纳,获得10
24秒前
嗯哼应助科研通管家采纳,获得20
24秒前
Hello应助科研通管家采纳,获得10
24秒前
8R60d8应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得10
24秒前
8R60d8应助科研通管家采纳,获得10
24秒前
wanci应助科研通管家采纳,获得10
25秒前
时倾发布了新的文献求助10
26秒前
haowu发布了新的文献求助10
27秒前
32秒前
上官若男应助甜蜜冰颜采纳,获得10
33秒前
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161774
求助须知:如何正确求助?哪些是违规求助? 2813049
关于积分的说明 7898270
捐赠科研通 2472043
什么是DOI,文献DOI怎么找? 1316316
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129