Development an electronic nose to recognize pesticides in groundwater

电子鼻 杀虫剂 地下水 污染 鼻子 样品(材料) 环境污染 化学 环境科学 人工智能 计算机科学 工程类 生态学 地质学 色谱法 环境保护 古生物学 岩土工程 生物
作者
Bingyang Wang,Donghui Chen,Xiaohui Weng,Zhiyong Chang
出处
期刊:Talanta [Elsevier BV]
卷期号:269: 125506-125506 被引量:15
标识
DOI:10.1016/j.talanta.2023.125506
摘要

Timely detection of Groundwater pollution is essential to protect human health, especially for pesticide pollution. To solve this issue, we proposed a novel solution to realize the prediction of pesticide in groundwater by using the electronic nose (e-nose). The main work of this paper was divided into three steps: 1) checking whether sample was polluted by pesticides, 2) further predicting the pesticide type, brand and pollution degree when the sample was polluted by pesticides, and 3) optimizing the sensor array. Random forest was used to complete the first step, which had the best accuracy and sensitivity of 100 %. Support vector machine was applied to complete the second step, and the accuracy reaching 98.08 %. As for the third step, recursive feature elimination was used to optimize the sensor array. After optimization, the number of sensors was reduced from 26 to 8. In addition, the e-nose developed in this paper was compared with a commercial e-nose. The results showed that the cost of the developed e-nose was much lower than that of the commercial e-nose despite its slightly weaker prediction performance. Thus, this e-nose can be employed to recognize the pesticides in groundwater, and even can be integrated into the while drilling technology to realize the in-situ detection of groundwater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hei完成签到 ,获得积分10
1秒前
1秒前
2秒前
RaynorHank完成签到,获得积分10
2秒前
CScs25完成签到,获得积分10
2秒前
呼呼啦啦完成签到,获得积分10
2秒前
青山完成签到,获得积分10
2秒前
粥粥完成签到,获得积分0
2秒前
束玲玲完成签到,获得积分10
2秒前
Leeu完成签到,获得积分10
2秒前
jyu完成签到,获得积分10
3秒前
新帅完成签到,获得积分10
3秒前
桑榆非晚完成签到,获得积分10
3秒前
令狐万仇完成签到,获得积分10
3秒前
chen完成签到,获得积分10
3秒前
zzzzzzzp完成签到,获得积分10
3秒前
taytay完成签到,获得积分10
3秒前
LEE123完成签到,获得积分10
3秒前
4秒前
Lze发布了新的文献求助10
4秒前
希望天下0贩的0应助夜夜采纳,获得10
4秒前
猫小咪发布了新的文献求助10
5秒前
RaynorHank发布了新的文献求助50
5秒前
5秒前
cccccc完成签到,获得积分10
6秒前
maiyatang完成签到,获得积分10
6秒前
6秒前
小马甲应助2633148059采纳,获得10
7秒前
miao完成签到,获得积分10
7秒前
Bertha完成签到,获得积分10
7秒前
11完成签到,获得积分10
7秒前
7秒前
SciGPT应助Baron采纳,获得10
9秒前
左岸完成签到,获得积分10
9秒前
cong完成签到,获得积分10
9秒前
不低头完成签到,获得积分10
9秒前
9秒前
phil完成签到,获得积分10
10秒前
camellia完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5162882
求助须知:如何正确求助?哪些是违规求助? 4355956
关于积分的说明 13560837
捐赠科研通 4200975
什么是DOI,文献DOI怎么找? 2304090
邀请新用户注册赠送积分活动 1304063
关于科研通互助平台的介绍 1250390