Development an electronic nose to recognize pesticides in groundwater

电子鼻 杀虫剂 地下水 污染 鼻子 样品(材料) 环境污染 化学 环境科学 人工智能 计算机科学 工程类 生态学 地质学 色谱法 环境保护 古生物学 生物 岩土工程
作者
Bingyang Wang,Donghui Chen,Xiaohui Weng,Zhiyong Chang
出处
期刊:Talanta [Elsevier]
卷期号:269: 125506-125506 被引量:4
标识
DOI:10.1016/j.talanta.2023.125506
摘要

Timely detection of Groundwater pollution is essential to protect human health, especially for pesticide pollution. To solve this issue, we proposed a novel solution to realize the prediction of pesticide in groundwater by using the electronic nose (e-nose). The main work of this paper was divided into three steps: 1) checking whether sample was polluted by pesticides, 2) further predicting the pesticide type, brand and pollution degree when the sample was polluted by pesticides, and 3) optimizing the sensor array. Random forest was used to complete the first step, which had the best accuracy and sensitivity of 100 %. Support vector machine was applied to complete the second step, and the accuracy reaching 98.08 %. As for the third step, recursive feature elimination was used to optimize the sensor array. After optimization, the number of sensors was reduced from 26 to 8. In addition, the e-nose developed in this paper was compared with a commercial e-nose. The results showed that the cost of the developed e-nose was much lower than that of the commercial e-nose despite its slightly weaker prediction performance. Thus, this e-nose can be employed to recognize the pesticides in groundwater, and even can be integrated into the while drilling technology to realize the in-situ detection of groundwater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sera完成签到 ,获得积分10
2秒前
老八完成签到,获得积分10
3秒前
蓝泡泡完成签到 ,获得积分10
5秒前
研友_VZG7GZ应助春天的粥采纳,获得50
7秒前
wanci应助圆心角采纳,获得10
12秒前
13秒前
19应助亚迪采纳,获得50
18秒前
wanci应助pryturk采纳,获得10
18秒前
泥巴完成签到,获得积分10
20秒前
这个硬盘完成签到 ,获得积分10
20秒前
有人应助阿尼亚采纳,获得10
21秒前
21秒前
cc2713206完成签到,获得积分0
22秒前
爱学习的小花生完成签到,获得积分10
24秒前
24秒前
在水一方应助科研通管家采纳,获得20
25秒前
不配.应助科研通管家采纳,获得20
25秒前
NexusExplorer应助科研通管家采纳,获得10
25秒前
Nitric_Oxide应助科研通管家采纳,获得10
25秒前
CipherSage应助科研通管家采纳,获得10
25秒前
吉祥应助科研通管家采纳,获得30
25秒前
无花果应助科研通管家采纳,获得10
25秒前
情怀应助科研通管家采纳,获得30
25秒前
Jasper应助科研通管家采纳,获得50
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
26秒前
28秒前
30秒前
33秒前
orixero应助strings采纳,获得10
34秒前
35秒前
浅泽发布了新的文献求助10
35秒前
方方发布了新的文献求助30
37秒前
37秒前
有人应助阿尼亚采纳,获得10
39秒前
40秒前
清清完成签到,获得积分10
40秒前
41秒前
踏实梦菲发布了新的文献求助10
41秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140205
求助须知:如何正确求助?哪些是违规求助? 2791011
关于积分的说明 7797468
捐赠科研通 2447398
什么是DOI,文献DOI怎么找? 1301879
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194