清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and Validation of a Natural Language Processing Model to Identify Low-Risk Pulmonary Embolism in Real Time to Facilitate Safe Outpatient Management

医学 肺栓塞 急诊科 急诊医学 病历 门诊部 医疗急救 放射科 人工智能 内科学 计算机科学 精神科
作者
Krunal Amin,E. Hope Weissler,William Ratliff,Alexander E. Sullivan,Tara Holder,Cathleen Bury,Samuel Francis,Brent Jason Theiling,Bradley J. Hintze,Michael Gao,Marshall Nichols,Suresh Balu,W. Schuyler Jones,Mark Sendak
出处
期刊:Annals of Emergency Medicine [Elsevier]
卷期号:84 (2): 118-127 被引量:1
标识
DOI:10.1016/j.annemergmed.2024.01.036
摘要

Study objective This study aimed to (1) develop and validate a natural language processing model to identify the presence of pulmonary embolism (PE) based on real-time radiology reports and (2) identify low-risk PE patients based on previously validated risk stratification scores using variables extracted from the electronic health record at the time of diagnosis. The combination of these approaches yielded an natural language processing-based clinical decision support tool that can identify patients presenting to the emergency department (ED) with low-risk PE as candidates for outpatient management. Methods Data were curated from all patients who received a PE-protocol computed tomography pulmonary angiogram (PE-CTPA) imaging study in the ED of a 3-hospital academic health system between June 1, 2018 and December 31, 2020 (n=12,183). The "preliminary" radiology reports from these imaging studies made available to ED clinicians at the time of diagnosis were adjudicated as positive or negative for PE by the clinical team. The reports were then divided into development, internal validation, and temporal validation cohorts in order to train, test, and validate an natural language processing model that could identify the presence of PE based on unstructured text. For risk stratification, patient- and encounter-level data elements were curated from the electronic health record and used to compute a real-time simplified pulmonary embolism severity (sPESI) score at the time of diagnosis. Chart abstraction was performed on all low-risk PE patients admitted for inpatient management. Results When applied to the internal validation and temporal validation cohorts, the natural language processing model identified the presence of PE from radiology reports with an area under the receiver operating characteristic curve of 0.99, sensitivity of 0.86 to 0.87, and specificity of 0.99. Across cohorts, 10.5% of PE-CTPA studies were positive for PE, of which 22.2% were classified as low-risk by the sPESI score. Of all low-risk PE patients, 74.3% were admitted for inpatient management. Conclusion This study demonstrates that a natural language processing-based model utilizing real-time radiology reports can accurately identify patients with PE. Further, this model, used in combination with a validated risk stratification score (sPESI), provides a clinical decision support tool that accurately identifies patients in the ED with low-risk PE as candidates for outpatient management. This study aimed to (1) develop and validate a natural language processing model to identify the presence of pulmonary embolism (PE) based on real-time radiology reports and (2) identify low-risk PE patients based on previously validated risk stratification scores using variables extracted from the electronic health record at the time of diagnosis. The combination of these approaches yielded an natural language processing-based clinical decision support tool that can identify patients presenting to the emergency department (ED) with low-risk PE as candidates for outpatient management. Data were curated from all patients who received a PE-protocol computed tomography pulmonary angiogram (PE-CTPA) imaging study in the ED of a 3-hospital academic health system between June 1, 2018 and December 31, 2020 (n=12,183). The "preliminary" radiology reports from these imaging studies made available to ED clinicians at the time of diagnosis were adjudicated as positive or negative for PE by the clinical team. The reports were then divided into development, internal validation, and temporal validation cohorts in order to train, test, and validate an natural language processing model that could identify the presence of PE based on unstructured text. For risk stratification, patient- and encounter-level data elements were curated from the electronic health record and used to compute a real-time simplified pulmonary embolism severity (sPESI) score at the time of diagnosis. Chart abstraction was performed on all low-risk PE patients admitted for inpatient management. When applied to the internal validation and temporal validation cohorts, the natural language processing model identified the presence of PE from radiology reports with an area under the receiver operating characteristic curve of 0.99, sensitivity of 0.86 to 0.87, and specificity of 0.99. Across cohorts, 10.5% of PE-CTPA studies were positive for PE, of which 22.2% were classified as low-risk by the sPESI score. Of all low-risk PE patients, 74.3% were admitted for inpatient management. This study demonstrates that a natural language processing-based model utilizing real-time radiology reports can accurately identify patients with PE. Further, this model, used in combination with a validated risk stratification score (sPESI), provides a clinical decision support tool that accurately identifies patients in the ED with low-risk PE as candidates for outpatient management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小西完成签到 ,获得积分10
2秒前
Anan完成签到,获得积分10
1分钟前
木南大宝完成签到 ,获得积分10
1分钟前
乐乐应助Anan采纳,获得10
2分钟前
2分钟前
Anan发布了新的文献求助10
2分钟前
2分钟前
去去去去发布了新的文献求助10
2分钟前
科研通AI2S应助去去去去采纳,获得10
2分钟前
紫熊完成签到,获得积分10
4分钟前
joe完成签到 ,获得积分0
4分钟前
oracl完成签到 ,获得积分10
6分钟前
lilili发布了新的文献求助10
6分钟前
所所应助HudaBala采纳,获得10
6分钟前
辛勤的小海豚完成签到,获得积分10
7分钟前
lilili完成签到,获得积分10
7分钟前
墨海完成签到 ,获得积分10
8分钟前
iuv关闭了iuv文献求助
9分钟前
科研搬运工完成签到,获得积分10
9分钟前
上官若男应助司空天德采纳,获得10
9分钟前
iuv发布了新的文献求助10
10分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
10分钟前
今后应助kingqjack采纳,获得10
10分钟前
11分钟前
HudaBala发布了新的文献求助10
11分钟前
al完成签到 ,获得积分10
11分钟前
Wang完成签到 ,获得积分20
12分钟前
12分钟前
12分钟前
科研通AI2S应助yang采纳,获得10
12分钟前
NS完成签到,获得积分10
14分钟前
zsmj23完成签到 ,获得积分0
15分钟前
17852573662完成签到,获得积分10
15分钟前
15分钟前
隐形曼青应助FUNG采纳,获得10
15分钟前
火山完成签到 ,获得积分10
15分钟前
16分钟前
17分钟前
17分钟前
浮曳发布了新的文献求助10
17分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142722
求助须知:如何正确求助?哪些是违规求助? 2793589
关于积分的说明 7807032
捐赠科研通 2449892
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601328