Uncertainty Quantification in CO2 Trapping Mechanisms: A Case Study of PUNQ-S3 Reservoir Model Using Representative Geological Realizations and Unsupervised Machine Learning

计算机科学 俘获 人工智能 无监督学习 机器学习 数据挖掘 地理 林业
作者
Seyed Kourosh Mahjour,Jobayed Hossain Badhan,Salah A. Faroughi
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:17 (5): 1180-1180
标识
DOI:10.3390/en17051180
摘要

Evaluating uncertainty in CO2 injection projections often requires numerous high-resolution geological realizations (GRs) which, although effective, are computationally demanding. This study proposes the use of representative geological realizations (RGRs) as an efficient approach to capture the uncertainty range of the full set while reducing computational costs. A predetermined number of RGRs is selected using an integrated unsupervised machine learning (UML) framework, which includes Euclidean distance measurement, multidimensional scaling (MDS), and a deterministic K-means (DK-means) clustering algorithm. In the context of the intricate 3D aquifer CO2 storage model, PUNQ-S3, these algorithms are utilized. The UML methodology selects five RGRs from a pool of 25 possibilities (20% of the total), taking into account the reservoir quality index (RQI) as a static parameter of the reservoir. To determine the credibility of these RGRs, their simulation results are scrutinized through the application of the Kolmogorov–Smirnov (KS) test, which analyzes the distribution of the output. In this assessment, 40 CO2 injection wells cover the entire reservoir alongside the full set. The end-point simulation results indicate that the CO2 structural, residual, and solubility trapping within the RGRs and full set follow the same distribution. Simulating five RGRs alongside the full set of 25 GRs over 200 years, involving 10 years of CO2 injection, reveals consistently similar trapping distribution patterns, with an average value of Dmax of 0.21 remaining lower than Dcritical (0.66). Using this methodology, computational expenses related to scenario testing and development planning for CO2 storage reservoirs in the presence of geological uncertainties can be substantially reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Sharif318完成签到,获得积分10
2秒前
请叫我湿人人完成签到,获得积分10
3秒前
FashionBoy应助细心的小天鹅采纳,获得10
3秒前
FashionBoy应助南有乔木采纳,获得10
5秒前
Miruto完成签到,获得积分10
5秒前
赘婿应助ttkx采纳,获得10
6秒前
zcg完成签到 ,获得积分10
7秒前
科目三应助浅暖采纳,获得10
8秒前
mkk完成签到,获得积分10
9秒前
小马甲应助大意的醉山采纳,获得10
9秒前
Mingdoc完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
CodeCraft应助thousandlong采纳,获得10
11秒前
快乐蛋挞完成签到,获得积分20
12秒前
12秒前
瘦瘦语蕊完成签到,获得积分10
13秒前
wangjiale完成签到,获得积分10
13秒前
Xumm完成签到 ,获得积分10
15秒前
虚心虾米发布了新的文献求助10
15秒前
黑眼圈发布了新的文献求助30
16秒前
路漫漫123完成签到,获得积分10
17秒前
iceberg完成签到,获得积分10
17秒前
17秒前
王Jackson发布了新的文献求助30
17秒前
18秒前
19秒前
la完成签到,获得积分10
19秒前
wsy完成签到,获得积分10
19秒前
大壮完成签到,获得积分10
20秒前
酷波er应助走走采纳,获得10
21秒前
thousandlong发布了新的文献求助10
21秒前
从容的安双完成签到,获得积分10
21秒前
22秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959583
求助须知:如何正确求助?哪些是违规求助? 3505844
关于积分的说明 11126416
捐赠科研通 3237765
什么是DOI,文献DOI怎么找? 1789326
邀请新用户注册赠送积分活动 871669
科研通“疑难数据库(出版商)”最低求助积分说明 802963