亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Uncertainty Quantification in CO2 Trapping Mechanisms: A Case Study of PUNQ-S3 Reservoir Model Using Representative Geological Realizations and Unsupervised Machine Learning

计算机科学 俘获 人工智能 无监督学习 机器学习 数据挖掘 地理 林业
作者
Seyed Kourosh Mahjour,Jobayed Hossain Badhan,Salah A. Faroughi
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:17 (5): 1180-1180
标识
DOI:10.3390/en17051180
摘要

Evaluating uncertainty in CO2 injection projections often requires numerous high-resolution geological realizations (GRs) which, although effective, are computationally demanding. This study proposes the use of representative geological realizations (RGRs) as an efficient approach to capture the uncertainty range of the full set while reducing computational costs. A predetermined number of RGRs is selected using an integrated unsupervised machine learning (UML) framework, which includes Euclidean distance measurement, multidimensional scaling (MDS), and a deterministic K-means (DK-means) clustering algorithm. In the context of the intricate 3D aquifer CO2 storage model, PUNQ-S3, these algorithms are utilized. The UML methodology selects five RGRs from a pool of 25 possibilities (20% of the total), taking into account the reservoir quality index (RQI) as a static parameter of the reservoir. To determine the credibility of these RGRs, their simulation results are scrutinized through the application of the Kolmogorov–Smirnov (KS) test, which analyzes the distribution of the output. In this assessment, 40 CO2 injection wells cover the entire reservoir alongside the full set. The end-point simulation results indicate that the CO2 structural, residual, and solubility trapping within the RGRs and full set follow the same distribution. Simulating five RGRs alongside the full set of 25 GRs over 200 years, involving 10 years of CO2 injection, reveals consistently similar trapping distribution patterns, with an average value of Dmax of 0.21 remaining lower than Dcritical (0.66). Using this methodology, computational expenses related to scenario testing and development planning for CO2 storage reservoirs in the presence of geological uncertainties can be substantially reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
YUN关注了科研通微信公众号
20秒前
方金龙完成签到,获得积分20
28秒前
43秒前
cc完成签到 ,获得积分10
44秒前
YUN发布了新的文献求助10
48秒前
55秒前
自信号厂完成签到 ,获得积分0
59秒前
许三问完成签到 ,获得积分0
59秒前
刘坤选发布了新的文献求助10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
丁浩伦应助科研通管家采纳,获得10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
酷波er应助YUN采纳,获得30
1分钟前
1分钟前
hulahula完成签到 ,获得积分10
1分钟前
呼啦呼啦完成签到 ,获得积分10
1分钟前
1分钟前
Rui完成签到 ,获得积分10
1分钟前
英俊的铭应助骆十八采纳,获得30
1分钟前
1分钟前
1分钟前
开霁完成签到 ,获得积分10
2分钟前
2分钟前
杏仁核发布了新的文献求助10
2分钟前
2分钟前
衣裳薄完成签到,获得积分10
2分钟前
吃了吃了完成签到,获得积分10
2分钟前
2分钟前
Hello应助yifei采纳,获得10
2分钟前
谷雨完成签到 ,获得积分20
2分钟前
谷雨关注了科研通微信公众号
2分钟前
丁浩伦应助科研通管家采纳,获得10
2分钟前
weske完成签到 ,获得积分10
3分钟前
无花果应助干净南风采纳,获得10
3分钟前
momomomo完成签到,获得积分10
3分钟前
3分钟前
搜集达人应助牟青采纳,获得10
3分钟前
yifei发布了新的文献求助10
3分钟前
朱宣诚发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581720
求助须知:如何正确求助?哪些是违规求助? 3999594
关于积分的说明 12381455
捐赠科研通 3674322
什么是DOI,文献DOI怎么找? 2024907
邀请新用户注册赠送积分活动 1058770
科研通“疑难数据库(出版商)”最低求助积分说明 945556