Uncertainty Quantification in CO2 Trapping Mechanisms: A Case Study of PUNQ-S3 Reservoir Model Using Representative Geological Realizations and Unsupervised Machine Learning

计算机科学 俘获 人工智能 无监督学习 机器学习 数据挖掘 地理 林业
作者
Seyed Kourosh Mahjour,Jobayed Hossain Badhan,Salah A. Faroughi
出处
期刊:Energies [MDPI AG]
卷期号:17 (5): 1180-1180
标识
DOI:10.3390/en17051180
摘要

Evaluating uncertainty in CO2 injection projections often requires numerous high-resolution geological realizations (GRs) which, although effective, are computationally demanding. This study proposes the use of representative geological realizations (RGRs) as an efficient approach to capture the uncertainty range of the full set while reducing computational costs. A predetermined number of RGRs is selected using an integrated unsupervised machine learning (UML) framework, which includes Euclidean distance measurement, multidimensional scaling (MDS), and a deterministic K-means (DK-means) clustering algorithm. In the context of the intricate 3D aquifer CO2 storage model, PUNQ-S3, these algorithms are utilized. The UML methodology selects five RGRs from a pool of 25 possibilities (20% of the total), taking into account the reservoir quality index (RQI) as a static parameter of the reservoir. To determine the credibility of these RGRs, their simulation results are scrutinized through the application of the Kolmogorov–Smirnov (KS) test, which analyzes the distribution of the output. In this assessment, 40 CO2 injection wells cover the entire reservoir alongside the full set. The end-point simulation results indicate that the CO2 structural, residual, and solubility trapping within the RGRs and full set follow the same distribution. Simulating five RGRs alongside the full set of 25 GRs over 200 years, involving 10 years of CO2 injection, reveals consistently similar trapping distribution patterns, with an average value of Dmax of 0.21 remaining lower than Dcritical (0.66). Using this methodology, computational expenses related to scenario testing and development planning for CO2 storage reservoirs in the presence of geological uncertainties can be substantially reduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小谢完成签到 ,获得积分10
1秒前
风中刺猬完成签到,获得积分10
2秒前
3秒前
NWAFUZH发布了新的文献求助10
6秒前
聪慧勒完成签到 ,获得积分20
6秒前
7秒前
9秒前
不想取名字完成签到,获得积分20
11秒前
彭于晏应助朴素海亦采纳,获得10
13秒前
14秒前
小立发布了新的文献求助10
15秒前
传奇3应助Soleil采纳,获得100
16秒前
深情安青应助Jeannie采纳,获得30
16秒前
枘棋完成签到 ,获得积分10
18秒前
22秒前
隐形曼青应助聪慧勒采纳,获得10
22秒前
早点毕业发布了新的文献求助10
24秒前
壮观戾发布了新的文献求助10
27秒前
28秒前
存钱买馒头完成签到,获得积分10
28秒前
闪闪的梦柏完成签到,获得积分10
30秒前
慕青应助微笑的语芙采纳,获得10
30秒前
徐芸萍完成签到,获得积分10
32秒前
秋半梦发布了新的文献求助30
32秒前
32秒前
33秒前
单纯寒荷完成签到 ,获得积分10
33秒前
34秒前
冲冲冲完成签到,获得积分10
35秒前
35秒前
35秒前
36秒前
36秒前
37秒前
orixero应助秋秋采纳,获得10
37秒前
无花果应助之星君采纳,获得10
38秒前
HanXiaodai完成签到,获得积分10
39秒前
Soleil发布了新的文献求助100
39秒前
JR关注了科研通微信公众号
40秒前
41秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793077
关于积分的说明 7805362
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303232
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291