Numerical simulation of diesel particulate filter flow characteristics optimization: From the perspective of pore structure parameters and inlet velocity

压力降 柴油颗粒过滤器 机械 材料科学 多孔性 多孔介质 格子Boltzmann方法 柴油 复合材料 工程类 物理 废物管理
作者
Diming Lou,Zhilin Chen,Yunhua Zhang,Yu-qi Yu,Liang Fang,Piqiang Tan,Zhiyuan Hu
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:184: 1468-1483 被引量:1
标识
DOI:10.1016/j.psep.2024.03.002
摘要

The diesel particulate filter (DPF) with porous media structure has become an essential component for diesel engines to satisfy increasingly strict emission standards. This study constructed a porous media structure model of DPF, and optimized its boundary to conduct a simulation on the flow characteristic with different influencing parameters using the lattice Boltzmann method (LBM). Results showed that the increase of the average flow velocity of the DPF model reduced the pressure drop, indicating that the flow probability of model improved. In addition, the porosity application range was expanded. The visualization and quantization of the velocity and pressure distribution with the DPF revealed that an increase of the wall thickness resulted in a higher pressure drop of the DPF, but a lower flow velocity. Further, the fractal dimension of the porous media exhibited no direct relationship with the DPF pressure and velocity performance; however, the outlet velocity and pressure drop of the model were optimized within the different porosity. Moreover, both the increase in the spectral dimension and model optimization improved the DPF permeability. The impact of increasing the inlet velocity on the pressure drop was particularly significant as it accelerated the rate of pressure drop, illustrating that a smoother porous media boundary was conducive to improve the flow performance of DPF, which facilitated a better scheme for the design of DPF porous media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liyi发布了新的文献求助10
刚刚
苗条的山晴完成签到,获得积分10
刚刚
1秒前
mm完成签到,获得积分10
2秒前
JUll发布了新的文献求助10
2秒前
无奈抽屉完成签到 ,获得积分10
2秒前
2秒前
3秒前
风中的夏兰完成签到,获得积分10
3秒前
czt完成签到,获得积分10
3秒前
研友_nPPERn发布了新的文献求助10
3秒前
4秒前
温柔若发布了新的文献求助10
4秒前
ry发布了新的文献求助10
4秒前
gms发布了新的文献求助10
4秒前
Owen应助judy采纳,获得30
4秒前
Zifflie完成签到,获得积分10
4秒前
5秒前
5秒前
xuanxuan发布了新的文献求助10
5秒前
keigo发布了新的文献求助10
5秒前
xqwwqx发布了新的文献求助10
5秒前
fay完成签到,获得积分10
6秒前
毛儿豆儿完成签到,获得积分10
6秒前
马铃薯发布了新的文献求助10
6秒前
帅玉玉发布了新的文献求助10
6秒前
MADKAI发布了新的文献求助10
6秒前
老詹头完成签到,获得积分10
6秒前
7秒前
鲸落完成签到,获得积分10
7秒前
erfc完成签到,获得积分10
7秒前
ezreal完成签到,获得积分10
8秒前
sll发布了新的文献求助20
8秒前
Ava应助liyi采纳,获得10
8秒前
FFFFFFF应助圈圈采纳,获得10
8秒前
8秒前
JUll完成签到,获得积分10
9秒前
10秒前
aurora发布了新的文献求助10
10秒前
七七发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678