Numerical simulation of diesel particulate filter flow characteristics optimization: From the perspective of pore structure parameters and inlet velocity

压力降 柴油颗粒过滤器 机械 材料科学 多孔性 多孔介质 格子Boltzmann方法 柴油 复合材料 工程类 物理 废物管理
作者
Diming Lou,Zhilin Chen,Yunhua Zhang,Yu-qi Yu,Liang Fang,Piqiang Tan,Zhiyuan Hu
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:184: 1468-1483 被引量:1
标识
DOI:10.1016/j.psep.2024.03.002
摘要

The diesel particulate filter (DPF) with porous media structure has become an essential component for diesel engines to satisfy increasingly strict emission standards. This study constructed a porous media structure model of DPF, and optimized its boundary to conduct a simulation on the flow characteristic with different influencing parameters using the lattice Boltzmann method (LBM). Results showed that the increase of the average flow velocity of the DPF model reduced the pressure drop, indicating that the flow probability of model improved. In addition, the porosity application range was expanded. The visualization and quantization of the velocity and pressure distribution with the DPF revealed that an increase of the wall thickness resulted in a higher pressure drop of the DPF, but a lower flow velocity. Further, the fractal dimension of the porous media exhibited no direct relationship with the DPF pressure and velocity performance; however, the outlet velocity and pressure drop of the model were optimized within the different porosity. Moreover, both the increase in the spectral dimension and model optimization improved the DPF permeability. The impact of increasing the inlet velocity on the pressure drop was particularly significant as it accelerated the rate of pressure drop, illustrating that a smoother porous media boundary was conducive to improve the flow performance of DPF, which facilitated a better scheme for the design of DPF porous media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
澜生完成签到 ,获得积分10
1秒前
AGuang完成签到,获得积分10
4秒前
4秒前
piaoaxi完成签到 ,获得积分10
4秒前
4秒前
布拉德皮特厚完成签到,获得积分10
4秒前
上善若水完成签到 ,获得积分10
5秒前
sduzou发布了新的文献求助10
8秒前
Wang发布了新的文献求助10
8秒前
欣慰汉堡完成签到,获得积分10
9秒前
fuxiao完成签到 ,获得积分10
11秒前
吉吉完成签到 ,获得积分10
11秒前
泉竹晓筱完成签到,获得积分10
15秒前
鲑鱼完成签到 ,获得积分10
15秒前
YYY完成签到,获得积分10
16秒前
俭朴的发带完成签到,获得积分10
16秒前
小瓶盖完成签到 ,获得积分10
16秒前
学习完成签到,获得积分10
16秒前
亭子完成签到,获得积分10
19秒前
SciGPT应助YCu采纳,获得30
19秒前
652183758完成签到 ,获得积分10
19秒前
万能的小叮当完成签到,获得积分0
19秒前
yeyuchenfeng完成签到,获得积分10
21秒前
居居侠完成签到 ,获得积分10
21秒前
RYK完成签到 ,获得积分10
24秒前
ywindm完成签到,获得积分10
25秒前
25秒前
HLT完成签到 ,获得积分10
26秒前
QYY完成签到,获得积分10
27秒前
28秒前
邓博完成签到,获得积分10
29秒前
Akim应助kong采纳,获得200
30秒前
Amon完成签到,获得积分10
30秒前
啊啊啊啊完成签到,获得积分10
31秒前
lily完成签到 ,获得积分10
32秒前
Theodore完成签到,获得积分10
32秒前
小科完成签到,获得积分10
33秒前
23完成签到,获得积分10
34秒前
颖涵完成签到,获得积分10
34秒前
科研通AI5应助好困采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513406
关于积分的说明 11167631
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875150
科研通“疑难数据库(出版商)”最低求助积分说明 804671