Nanozyme Sensor Based on Au Nanoparticles/N-Doped Porous Carbon Composites for Biosensing

材料科学 生物传感器 纳米颗粒 复合材料 兴奋剂 多孔性 碳纤维 碳纳米颗粒 碳纳米管 纳米技术 复合数 光电子学
作者
Zhuzhen Chen,Tingting Zhang,Yu Liu,Xue Zhang,Linwei Chen,Zhiquan Zhang,Nannan Lu
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (4): 3645-3655 被引量:1
标识
DOI:10.1021/acsanm.3c05016
摘要

The rational construction of nanomaterials with boosted peroxidase (POD)-like activity is momentous in artificial enzyme design and biological catalytic fields. Herein, a hybrid nanozyme, gold nanoparticles/N-doped porous carbon (AuNPs/NPC), is fabricated via a supramolecular assembly-assisted pyrolysis strategy and engineered as a peroxidase mimic. In this strategy, a melamine-cyanurate supramolecular aggregate can be employed not only as a self-vanishing template to gain porous morphology but also as a nitrogen source to achieve an exceptional high N doping. The obtained NPC is then subsequently used to immobilize AuNPs via an in situ reduction approach. Benefiting from well-dispersed ultrafine AuNPs, high N content, hierarchical porous architecture, and the synergistic effect of AuNPs and NPC, the fabricated nanozyme exhibits enhanced POD-like activity, making it a potential alternative to peroxidase mimics. Besides, the AuNPs/NPC shows highly electrocatalytic properties, which could serve as a signal amplification platform for ultrasensitively detecting hydrogen peroxide (H2O2). The hybrid nanozyme-based electrochemical sensor shows a linear relationship within 0.2–7000 μM. Significantly, the sensitivity and limit of detection of the fabricated sensor are 285.9 μA mM–1 cm–2 and 67 nM, respectively. Also, this biosensor is applied to detect H2O2 in human serum samples and A549 cells with desirable results. Therefore, the present work offers a facile strategy for the fabrication of a high N-contained hybrid nanozyme to simulate the catalytic activity of natural enzymes and exhibits broad prospects in biosensing, mimicking-enzyme catalytic fields, and clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助TINA采纳,获得10
刚刚
大方的冥王星完成签到 ,获得积分10
1秒前
Singularity发布了新的文献求助10
1秒前
Jj7完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
yiyi发布了新的文献求助10
4秒前
mysticwang完成签到,获得积分10
4秒前
ZSmile完成签到,获得积分10
4秒前
Sniper6716完成签到,获得积分10
5秒前
lsw发布了新的文献求助10
6秒前
6秒前
123发布了新的文献求助10
6秒前
庾储发布了新的文献求助10
7秒前
U2发布了新的文献求助10
8秒前
8秒前
MrFamous完成签到,获得积分10
8秒前
老毛发布了新的文献求助10
9秒前
Ava应助震震采纳,获得10
9秒前
11秒前
11秒前
12秒前
lx完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
万能图书馆应助Lockhart采纳,获得10
15秒前
lsw完成签到,获得积分20
15秒前
16秒前
受激布里渊散射完成签到,获得积分10
16秒前
今后应助威武的锅锅采纳,获得10
16秒前
Qin发布了新的文献求助10
17秒前
七七完成签到,获得积分20
18秒前
xdj1990831473发布了新的文献求助10
18秒前
感动的嚓茶完成签到,获得积分10
18秒前
19秒前
李健应助1234采纳,获得10
21秒前
老毛完成签到,获得积分10
21秒前
十一完成签到,获得积分10
22秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Ethnicities: Media, Health, and Coping 800
Treatise on Geomorphology(2nd Edition - March 1, 2022) 520
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3070075
求助须知:如何正确求助?哪些是违规求助? 2724068
关于积分的说明 7483773
捐赠科研通 2371206
什么是DOI,文献DOI怎么找? 1257323
科研通“疑难数据库(出版商)”最低求助积分说明 609889
版权声明 596879