Nanozyme Sensor Based on Au Nanoparticles/N-Doped Porous Carbon Composites for Biosensing

材料科学 生物传感器 纳米颗粒 复合材料 兴奋剂 多孔性 碳纤维 碳纳米颗粒 碳纳米管 纳米技术 复合数 光电子学
作者
Zhuzhen Chen,Tingting Zhang,Yu Liu,Xue Zhang,Linwei Chen,Zhiquan Zhang,Nannan Lu
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (4): 3645-3655 被引量:3
标识
DOI:10.1021/acsanm.3c05016
摘要

The rational construction of nanomaterials with boosted peroxidase (POD)-like activity is momentous in artificial enzyme design and biological catalytic fields. Herein, a hybrid nanozyme, gold nanoparticles/N-doped porous carbon (AuNPs/NPC), is fabricated via a supramolecular assembly-assisted pyrolysis strategy and engineered as a peroxidase mimic. In this strategy, a melamine-cyanurate supramolecular aggregate can be employed not only as a self-vanishing template to gain porous morphology but also as a nitrogen source to achieve an exceptional high N doping. The obtained NPC is then subsequently used to immobilize AuNPs via an in situ reduction approach. Benefiting from well-dispersed ultrafine AuNPs, high N content, hierarchical porous architecture, and the synergistic effect of AuNPs and NPC, the fabricated nanozyme exhibits enhanced POD-like activity, making it a potential alternative to peroxidase mimics. Besides, the AuNPs/NPC shows highly electrocatalytic properties, which could serve as a signal amplification platform for ultrasensitively detecting hydrogen peroxide (H2O2). The hybrid nanozyme-based electrochemical sensor shows a linear relationship within 0.2–7000 μM. Significantly, the sensitivity and limit of detection of the fabricated sensor are 285.9 μA mM–1 cm–2 and 67 nM, respectively. Also, this biosensor is applied to detect H2O2 in human serum samples and A549 cells with desirable results. Therefore, the present work offers a facile strategy for the fabrication of a high N-contained hybrid nanozyme to simulate the catalytic activity of natural enzymes and exhibits broad prospects in biosensing, mimicking-enzyme catalytic fields, and clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
donk完成签到 ,获得积分10
1秒前
传奇3应助lx采纳,获得10
1秒前
2秒前
华仔应助bluer采纳,获得10
2秒前
poo1900完成签到,获得积分10
2秒前
ssx完成签到,获得积分10
2秒前
2秒前
xuanxuan完成签到,获得积分10
2秒前
CyrusSo524完成签到,获得积分10
2秒前
2秒前
格格星完成签到,获得积分10
3秒前
jackish完成签到,获得积分10
3秒前
3秒前
3秒前
英姑应助温柔若采纳,获得10
3秒前
4秒前
熠熠完成签到,获得积分10
6秒前
wangping发布了新的文献求助10
6秒前
李爱国应助小豆芽儿采纳,获得10
6秒前
7秒前
7秒前
FFF完成签到,获得积分20
8秒前
学术小黄完成签到,获得积分10
8秒前
么系么系发布了新的文献求助10
8秒前
9秒前
小洪俊熙完成签到,获得积分10
10秒前
123完成签到,获得积分10
10秒前
SYLH应助di采纳,获得10
10秒前
10秒前
柒毛完成签到 ,获得积分10
11秒前
搜集达人应助tatata采纳,获得20
11秒前
英俊的铭应助诚c采纳,获得10
11秒前
兔子完成签到 ,获得积分10
11秒前
11秒前
苹果巧蕊完成签到 ,获得积分10
11秒前
脑洞疼应助SDS采纳,获得10
11秒前
JamesPei应助Guo采纳,获得20
12秒前
马保国123完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678