Overview of emerging semiconductor device model methodologies: From device physics to machine learning engines

过程(计算) 计算机科学 结构化 半导体器件 电子工程 工程类 纳米技术 图层(电子) 财务 操作系统 经济 材料科学
作者
Xufan Li,Zhenhua Wu,G. Rzepa,M. Karner,Haoqing Xu,Z. Wu,Wei Wang,Guanhua Yang,Qing Luo,Lingfei Wang,Ling Li
出处
期刊:Fundamental research [Elsevier]
被引量:7
标识
DOI:10.1016/j.fmre.2024.01.010
摘要

Advancements in the semiconductor industry introduce novel channel materials, device structures, and integration methods, leading to intricate physics challenges when characterizing devices at circuit level. Nevertheless, accurate models for emerging devices are crucial for physics-driven TCAD-to-SPICE flows to enable the increasingly vital design technology co-optimization (DTCO). Particularly for ultra-scaled devices where quantum effects become significant, this led to the introduction of empirical model parameters and a disconnection to manufacturing processes. To catch up with these developments, an alternative to the traditional white-box modeling methods has attracted much attention: machine learning-assisted compact modeling (MLCM). These black-box methods target towards general-purpose modeling of complex mathematics and physics through training of neural networks on experimental and simulated data, generating an accurate closed-form mapping between output characteristics and input parameters for fabrication process and device operation. To address this new trend, this work provides a comprehensive overview of emerging device model methodologies, spanning from device physics to machine learning engines. By analyzing, structuring, and extending distributed efforts on this topic, it is shown how MLCM can overcome limitations of traditional compact modeling and contribute to effective DTCO to further advance semiconductor technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小秦秦完成签到 ,获得积分10
刚刚
May完成签到 ,获得积分10
刚刚
清脆香露完成签到 ,获得积分10
1秒前
2秒前
英姑应助ZME采纳,获得10
5秒前
酷波er应助狸小狐采纳,获得10
6秒前
少年游发布了新的文献求助10
7秒前
落寞小熊猫完成签到,获得积分10
7秒前
丘比特应助喜之郎采纳,获得10
7秒前
嗯哼应助小刘爱科研采纳,获得20
9秒前
天神完成签到,获得积分10
12秒前
111完成签到,获得积分10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得30
13秒前
李爱国应助科研通管家采纳,获得30
13秒前
yar应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
少年游完成签到,获得积分20
13秒前
yar应助科研通管家采纳,获得10
13秒前
张益萌应助科研通管家采纳,获得20
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
yar应助科研通管家采纳,获得10
14秒前
英俊的铭应助体贴花卷采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
14秒前
kinase完成签到 ,获得积分10
14秒前
lyz完成签到,获得积分10
15秒前
会魔法的老人完成签到,获得积分10
15秒前
15秒前
16秒前
依依发布了新的文献求助10
19秒前
19秒前
22秒前
liu完成签到,获得积分10
23秒前
激昂的亦竹完成签到 ,获得积分10
25秒前
sissiarno应助quhayley采纳,获得200
25秒前
27秒前
夏目友人张应助狗剩采纳,获得10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304346
求助须知:如何正确求助?哪些是违规求助? 2938329
关于积分的说明 8488322
捐赠科研通 2612813
什么是DOI,文献DOI怎么找? 1426885
科研通“疑难数据库(出版商)”最低求助积分说明 662879
邀请新用户注册赠送积分活动 647374