ELGC-Net: Efficient Local–Global Context Aggregation for Remote Sensing Change Detection

遥感 变更检测 背景(考古学) 计算机科学 地质学 古生物学
作者
Mubashir Noman,Mustansar Fiaz,Hisham Cholakkal,Salman Khan,Fahad Shahbaz Khan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-11 被引量:13
标识
DOI:10.1109/tgrs.2024.3362914
摘要

Deep learning has shown remarkable success in remote sensing change detection (CD), aiming to identify semantic change regions between co-registered satellite image pairs acquired at distinct time stamps. However, existing convolutional neural network (CNN) and transformer-based frameworks often struggle to accurately segment semantic change regions. Moreover, transformers-based methods with standard self-attention suffer from quadratic computational complexity with respect to the image resolution, making them less practical for CD tasks with limited training data. To address these issues, we propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions while reducing the model size. Our ELGC-Net comprises a Siamese encoder, fusion modules, and a decoder. The focus of our design is the introduction of an Efficient Local-Global Context Aggregator (ELGCA) module within the encoder, capturing enhanced global context and local spatial information through a novel pooled-transpose (PT) attention and depthwise convolution, respectively. The PT attention employs pooling operations for robust feature extraction and minimizes computational cost with transposed attention. Extensive experiments on three challenging CD datasets demonstrate that ELGC-Net outperforms existing methods. Compared to the recent transformer-based CD approach (ChangeFormer), ELGC-Net achieves a 1.4% gain in intersection over union (IoU) metric on the LEVIR-CD dataset, while significantly reducing trainable parameters. Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks. Finally, we also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings, while achieving comparable performance. Our source code is publicly available at https://github.com/techmn/elgcnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代CC完成签到 ,获得积分10
刚刚
堀江真夏完成签到 ,获得积分10
1秒前
冰阔落完成签到 ,获得积分10
4秒前
甜甜秋荷完成签到,获得积分10
5秒前
7秒前
HEYATIAN完成签到 ,获得积分10
7秒前
蛙趣发布了新的文献求助10
11秒前
若枫完成签到,获得积分10
12秒前
carpediem发布了新的文献求助10
14秒前
ECHO完成签到,获得积分10
15秒前
京京完成签到 ,获得积分10
19秒前
赘婿应助carpediem采纳,获得10
21秒前
鞑靼完成签到 ,获得积分10
21秒前
科研顺利完成签到,获得积分10
21秒前
25秒前
完美青旋关注了科研通微信公众号
28秒前
小小想想完成签到,获得积分10
29秒前
carpediem完成签到,获得积分20
29秒前
啦啦啦啦啦完成签到,获得积分10
30秒前
正直的松鼠完成签到 ,获得积分10
36秒前
杨好圆完成签到,获得积分10
36秒前
爱吃泡芙完成签到,获得积分10
37秒前
excellent_shit完成签到,获得积分10
37秒前
玉崟完成签到 ,获得积分10
37秒前
38秒前
科研通AI2S应助zhangzhisenn采纳,获得10
39秒前
完美青旋发布了新的文献求助10
42秒前
木木完成签到 ,获得积分10
44秒前
画画的baby完成签到 ,获得积分10
44秒前
蛙趣发布了新的文献求助10
47秒前
LC完成签到 ,获得积分10
47秒前
会飞的小猪完成签到,获得积分0
50秒前
学不动完成签到 ,获得积分10
50秒前
52秒前
俊秀的念烟完成签到,获得积分10
52秒前
我唉科研完成签到,获得积分10
53秒前
研友_LMpo68完成签到 ,获得积分10
54秒前
彭于晏应助我唉科研采纳,获得10
56秒前
DQ1175发布了新的文献求助10
56秒前
57秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339197
求助须知:如何正确求助?哪些是违规求助? 2967064
关于积分的说明 8628229
捐赠科研通 2646594
什么是DOI,文献DOI怎么找? 1449297
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660180