亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ELGC-Net: Efficient Local–Global Context Aggregation for Remote Sensing Change Detection

遥感 变更检测 背景(考古学) 计算机科学 地质学 古生物学
作者
Mubashir Noman,Mustansar Fiaz,Hisham Cholakkal,Salman Khan,Fahad Shahbaz Khan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-11 被引量:69
标识
DOI:10.1109/tgrs.2024.3362914
摘要

Deep learning has shown remarkable success in remote sensing change detection (CD), aiming to identify semantic change regions between co-registered satellite image pairs acquired at distinct time stamps. However, existing convolutional neural network (CNN) and transformer-based frameworks often struggle to accurately segment semantic change regions. Moreover, transformers-based methods with standard self-attention suffer from quadratic computational complexity with respect to the image resolution, making them less practical for CD tasks with limited training data. To address these issues, we propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions while reducing the model size. Our ELGC-Net comprises a Siamese encoder, fusion modules, and a decoder. The focus of our design is the introduction of an Efficient Local-Global Context Aggregator (ELGCA) module within the encoder, capturing enhanced global context and local spatial information through a novel pooled-transpose (PT) attention and depthwise convolution, respectively. The PT attention employs pooling operations for robust feature extraction and minimizes computational cost with transposed attention. Extensive experiments on three challenging CD datasets demonstrate that ELGC-Net outperforms existing methods. Compared to the recent transformer-based CD approach (ChangeFormer), ELGC-Net achieves a 1.4% gain in intersection over union (IoU) metric on the LEVIR-CD dataset, while significantly reducing trainable parameters. Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks. Finally, we also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings, while achieving comparable performance. Our source code is publicly available at https://github.com/techmn/elgcnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
和谐牛排发布了新的文献求助50
6秒前
情怀应助田子廉采纳,获得10
8秒前
朴素妙梦发布了新的文献求助10
9秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
严兴明完成签到,获得积分10
13秒前
朴素妙梦完成签到,获得积分10
19秒前
sl完成签到 ,获得积分10
22秒前
科研通AI6应助hll采纳,获得10
32秒前
35秒前
斯文败类应助YDX采纳,获得10
35秒前
123123123完成签到,获得积分10
36秒前
上官若男应助z123456采纳,获得10
40秒前
42秒前
YDX发布了新的文献求助10
47秒前
48秒前
Sea_moon完成签到,获得积分10
49秒前
52秒前
笨笨三颜完成签到,获得积分10
54秒前
55秒前
陈陈发布了新的文献求助10
55秒前
56秒前
笨笨三颜发布了新的文献求助10
58秒前
迪仔完成签到 ,获得积分10
58秒前
村上春树的摩的完成签到 ,获得积分10
59秒前
zhongbo发布了新的文献求助10
1分钟前
华仔应助完美的jia采纳,获得10
1分钟前
上官若男应助笨笨三颜采纳,获得10
1分钟前
1分钟前
正直的冬灵完成签到,获得积分10
1分钟前
田子廉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI6应助轻松的飞阳采纳,获得10
1分钟前
1分钟前
辉夜折影完成签到,获得积分10
1分钟前
笨笨三颜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564848
求助须知:如何正确求助?哪些是违规求助? 4649537
关于积分的说明 14689066
捐赠科研通 4591517
什么是DOI,文献DOI怎么找? 2519183
邀请新用户注册赠送积分活动 1491843
关于科研通互助平台的介绍 1462872