Ct-based intratumoral and peritumoral radiomics for predicting prognosis in osteosarcoma: A multicenter study

医学 一致性 无线电技术 队列 骨肉瘤 内科学 回顾性队列研究 总体生存率 肿瘤科 放射科 核医学 病理
作者
Qiushi Su,Ning Wang,Bingyan Wang,Yanmei Wang,Zhengjun Dai,Xia Zhao,Xiaoli Li,Qiyuan Li,Guangjie Yang,Pei Nie
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:172: 111350-111350 被引量:5
标识
DOI:10.1016/j.ejrad.2024.111350
摘要

Abstract

Purpose

To evaluate the performance of CT-based intratumoral, peritumoral and combined radiomics signatures in predicting prognosis in patients with osteosarcoma.

Methods

The data of 202 patients (training cohort:102, testing cohort:100) with osteosarcoma admitted to the two hospitals from August 2008 to February 2022 were retrospectively analyzed. Progression free survival (PFS) and overall survival (OS) were used as the end points. The radiomics features were extracted from CT images, three radiomics signatures(RS intratumoral, RS peritumoral, RS combined)were constructed based on intratumoral, peritumoral and combined radiomics features, respectively, and the radiomics score (Rad-score) were calculated. Kaplan-Meier survival analysis was used to evaluate the relationship between the Rad-score with PFS and OS, the Harrell's concordance index (C-index) was used to evaluate the predictive performance of the radiomics signatures.

Results

Finally, 8, 6, and 21 features were selected for the establishment of RS intratumoral, RS peritumoral, and RS combined, respectively. Kaplan-Meier survival analysis confirmed that the Rad-scores of the three RSs were significantly correlated with the PFS and OS of patients with osteosarcoma. Among the three radiomics signatures, RS combined had better predictive performance, the C-index of PSF prediction was 0.833 in the training cohort and 0.814 in the testing cohort, the C-index of OS prediction was 0.796 in the training cohort and 0.764 in the testing cohort.

Conclusions

CT-based intratumoral, peritumoral and combined radiomics signatures can predict the prognosis of patients with osteosarcoma, which may assist in individualized treatment and improving the prognosis of osteosarcoma patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻灵安发布了新的文献求助10
刚刚
小宋同学不能怂完成签到 ,获得积分10
1秒前
干饭大王应助wenwen采纳,获得10
2秒前
2秒前
研友_Ze0vBn完成签到,获得积分10
3秒前
jim完成签到 ,获得积分10
3秒前
Sewerant完成签到 ,获得积分10
4秒前
LUO完成签到 ,获得积分10
4秒前
5秒前
Akim应助Pericardium采纳,获得10
5秒前
干饭大王应助科研鸟采纳,获得10
6秒前
6秒前
凉白开完成签到,获得积分10
6秒前
我是老大应助monned采纳,获得10
8秒前
8秒前
小姜完成签到,获得积分10
9秒前
清秀人杰发布了新的文献求助10
10秒前
yx_cheng应助GT采纳,获得30
10秒前
LC发布了新的文献求助10
11秒前
jack完成签到 ,获得积分10
11秒前
心灵美凝竹完成签到 ,获得积分10
12秒前
12秒前
13秒前
小姜发布了新的文献求助10
14秒前
14秒前
cc完成签到 ,获得积分10
15秒前
老六完成签到 ,获得积分10
15秒前
monned发布了新的文献求助10
17秒前
17秒前
Jenny发布了新的文献求助10
17秒前
汉堡包应助巨星不吃辣采纳,获得10
18秒前
zy发布了新的文献求助10
20秒前
tong完成签到,获得积分10
20秒前
LL发布了新的文献求助10
21秒前
pluto应助淡定的天空采纳,获得30
22秒前
干饭大王应助GT采纳,获得10
24秒前
完美世界应助ZZZ采纳,获得10
25秒前
小绵羊完成签到,获得积分10
26秒前
科研通AI2S应助Jenny采纳,获得10
26秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511680
关于积分的说明 11159133
捐赠科研通 3246277
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343