Ct-based intratumoral and peritumoral radiomics for predicting prognosis in osteosarcoma: A multicenter study

医学 一致性 无线电技术 队列 骨肉瘤 内科学 回顾性队列研究 总体生存率 肿瘤科 放射科 核医学 病理
作者
Qiushi Su,Ning Wang,Bingyan Wang,Yanmei Wang,Zhengjun Dai,Xia Zhao,Xiaoli Li,Qiyuan Li,Guangjie Yang,Pei Nie
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:172: 111350-111350 被引量:5
标识
DOI:10.1016/j.ejrad.2024.111350
摘要

Abstract

Purpose

To evaluate the performance of CT-based intratumoral, peritumoral and combined radiomics signatures in predicting prognosis in patients with osteosarcoma.

Methods

The data of 202 patients (training cohort:102, testing cohort:100) with osteosarcoma admitted to the two hospitals from August 2008 to February 2022 were retrospectively analyzed. Progression free survival (PFS) and overall survival (OS) were used as the end points. The radiomics features were extracted from CT images, three radiomics signatures(RS intratumoral, RS peritumoral, RS combined)were constructed based on intratumoral, peritumoral and combined radiomics features, respectively, and the radiomics score (Rad-score) were calculated. Kaplan-Meier survival analysis was used to evaluate the relationship between the Rad-score with PFS and OS, the Harrell's concordance index (C-index) was used to evaluate the predictive performance of the radiomics signatures.

Results

Finally, 8, 6, and 21 features were selected for the establishment of RS intratumoral, RS peritumoral, and RS combined, respectively. Kaplan-Meier survival analysis confirmed that the Rad-scores of the three RSs were significantly correlated with the PFS and OS of patients with osteosarcoma. Among the three radiomics signatures, RS combined had better predictive performance, the C-index of PSF prediction was 0.833 in the training cohort and 0.814 in the testing cohort, the C-index of OS prediction was 0.796 in the training cohort and 0.764 in the testing cohort.

Conclusions

CT-based intratumoral, peritumoral and combined radiomics signatures can predict the prognosis of patients with osteosarcoma, which may assist in individualized treatment and improving the prognosis of osteosarcoma patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助ljact采纳,获得10
1秒前
情怀应助Zhu1985采纳,获得10
1秒前
FashionBoy应助内向的昊焱采纳,获得10
1秒前
科研通AI6应助内向的昊焱采纳,获得10
1秒前
无花果应助文艺的草莓采纳,获得10
1秒前
ycy发布了新的文献求助10
2秒前
4秒前
4秒前
5秒前
Ava应助ddizi采纳,获得30
5秒前
5秒前
小池同学完成签到,获得积分10
6秒前
科研通AI6应助121311采纳,获得10
7秒前
Carolin发布了新的文献求助10
7秒前
谦让涵菡完成签到 ,获得积分10
8秒前
王耀武完成签到,获得积分10
8秒前
朴素念之完成签到,获得积分20
9秒前
9秒前
学术裁缝发布了新的文献求助10
9秒前
连冬萱发布了新的文献求助10
9秒前
ruby完成签到,获得积分10
9秒前
大魔王完成签到 ,获得积分10
10秒前
zhang完成签到,获得积分10
10秒前
YW发布了新的文献求助30
10秒前
xg发布了新的文献求助10
11秒前
12秒前
13秒前
14秒前
踏实绮露完成签到 ,获得积分10
14秒前
14秒前
iam小羊人完成签到,获得积分20
15秒前
15秒前
16秒前
失眠无声完成签到,获得积分10
16秒前
Jiang完成签到,获得积分10
17秒前
大模型应助称心的乘云采纳,获得10
17秒前
桐桐应助lw采纳,获得10
18秒前
18秒前
Hello应助连冬萱采纳,获得30
19秒前
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702