Ct-based intratumoral and peritumoral radiomics for predicting prognosis in osteosarcoma: A multicenter study

医学 一致性 无线电技术 队列 骨肉瘤 内科学 回顾性队列研究 总体生存率 肿瘤科 放射科 核医学 病理
作者
Qiushi Su,Ning Wang,Bingyan Wang,Yanmei Wang,Zhengjun Dai,Xia Zhao,Xiaoli Li,Qiyuan Li,Guangjie Yang,Pei Nie
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:172: 111350-111350 被引量:5
标识
DOI:10.1016/j.ejrad.2024.111350
摘要

Abstract

Purpose

To evaluate the performance of CT-based intratumoral, peritumoral and combined radiomics signatures in predicting prognosis in patients with osteosarcoma.

Methods

The data of 202 patients (training cohort:102, testing cohort:100) with osteosarcoma admitted to the two hospitals from August 2008 to February 2022 were retrospectively analyzed. Progression free survival (PFS) and overall survival (OS) were used as the end points. The radiomics features were extracted from CT images, three radiomics signatures(RS intratumoral, RS peritumoral, RS combined)were constructed based on intratumoral, peritumoral and combined radiomics features, respectively, and the radiomics score (Rad-score) were calculated. Kaplan-Meier survival analysis was used to evaluate the relationship between the Rad-score with PFS and OS, the Harrell's concordance index (C-index) was used to evaluate the predictive performance of the radiomics signatures.

Results

Finally, 8, 6, and 21 features were selected for the establishment of RS intratumoral, RS peritumoral, and RS combined, respectively. Kaplan-Meier survival analysis confirmed that the Rad-scores of the three RSs were significantly correlated with the PFS and OS of patients with osteosarcoma. Among the three radiomics signatures, RS combined had better predictive performance, the C-index of PSF prediction was 0.833 in the training cohort and 0.814 in the testing cohort, the C-index of OS prediction was 0.796 in the training cohort and 0.764 in the testing cohort.

Conclusions

CT-based intratumoral, peritumoral and combined radiomics signatures can predict the prognosis of patients with osteosarcoma, which may assist in individualized treatment and improving the prognosis of osteosarcoma patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助ZZ采纳,获得10
刚刚
1秒前
晓逗B哟关注了科研通微信公众号
1秒前
1秒前
1秒前
2秒前
科研通AI6应助着急的寻真采纳,获得10
2秒前
kk发布了新的文献求助10
3秒前
3秒前
3秒前
馆长举报量子星尘求助涉嫌违规
3秒前
科研通AI5应助Paddi采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助50
4秒前
YWG完成签到,获得积分10
4秒前
科研通AI6应助小羊采纳,获得10
5秒前
5秒前
健壮诗桃发布了新的文献求助10
5秒前
6秒前
周俊俊发布了新的文献求助10
7秒前
7秒前
SpineLY发布了新的文献求助10
7秒前
科研通AI6应助孤独的素采纳,获得10
7秒前
加缪应助王肖采纳,获得10
7秒前
西瓜珺发布了新的文献求助30
7秒前
7秒前
霜序完成签到,获得积分10
8秒前
8秒前
9秒前
为人朴素的小马完成签到,获得积分10
9秒前
Sugarhm发布了新的文献求助10
10秒前
月落无痕2025完成签到,获得积分10
10秒前
11秒前
JIE完成签到,获得积分10
11秒前
搞怪隶发布了新的文献求助10
11秒前
酷波er应助西瓜珺采纳,获得30
11秒前
君小伦发布了新的文献求助10
12秒前
terryok发布了新的文献求助30
13秒前
欢喜的荔枝完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4907686
求助须知:如何正确求助?哪些是违规求助? 4184596
关于积分的说明 12994737
捐赠科研通 3951119
什么是DOI,文献DOI怎么找? 2166819
邀请新用户注册赠送积分活动 1185410
关于科研通互助平台的介绍 1091841