Tin Halide Perovskite Solar Cells

钙钛矿(结构) 卤化物 材料科学 金属 光电子学 纳米技术 工程物理 化学工程 无机化学 化学 冶金 物理 工程类
作者
Xianyuan Jiang,Zihao Zang,Zhijun Ning
标识
DOI:10.1002/9783527829026.ch6
摘要

Chapter 6 Tin Halide Perovskite Solar Cells Xianyuan Jiang, Xianyuan Jiang ShanghaiTech University, School of Physical Science and Technology, 393 Middle Huaxia Road, Pudong, Shanghai, 201210 ChinaSearch for more papers by this authorZihao Zang, Zihao Zang ShanghaiTech University, School of Physical Science and Technology, 393 Middle Huaxia Road, Pudong, Shanghai, 201210 ChinaSearch for more papers by this authorZhijun Ning, Zhijun Ning ShanghaiTech University, School of Physical Science and Technology, 393 Middle Huaxia Road, Pudong, Shanghai, 201210 ChinaSearch for more papers by this author Xianyuan Jiang, Xianyuan Jiang ShanghaiTech University, School of Physical Science and Technology, 393 Middle Huaxia Road, Pudong, Shanghai, 201210 ChinaSearch for more papers by this authorZihao Zang, Zihao Zang ShanghaiTech University, School of Physical Science and Technology, 393 Middle Huaxia Road, Pudong, Shanghai, 201210 ChinaSearch for more papers by this authorZhijun Ning, Zhijun Ning ShanghaiTech University, School of Physical Science and Technology, 393 Middle Huaxia Road, Pudong, Shanghai, 201210 ChinaSearch for more papers by this author Book Editor(s):Yuanyuan Zhou, Yuanyuan Zhou The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077 ChinaSearch for more papers by this authorIván Mora Seró, Iván Mora Seró Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat, Castelló de la Plana, 12071 SpainSearch for more papers by this author First published: 22 December 2023 https://doi.org/10.1002/9783527829026.ch6 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Tin halide perovskite, due to its heavy metal-free character and ideal bandgap, is generally regarded as the most promising candidate for lead-free perovskite solar cells. In recent years, many efforts were made to improve optoelectronic properties and carrier transport of tin perovskite solar cells, leading to much-improved performance and stability. In this chapter, we introduce fundamental properties of tin perovskite and summarize main efforts to improve the efficiency of tin perovskite solar cells, including perovskite composition designing, additives manipulation, and device architecture engineering. Lastly, potential directions are discussed to guide the future study of tin perovskite solar cells. References Ma , C.Q. and Park , N.G. ( 2020 ). A realistic methodology for 30% efficient perovskite solar cells . Chem 6 : 1254 – 1264 . 10.1016/j.chempr.2020.04.013 CASWeb of Science®Google Scholar Jiang , X. , Zang , Z. , Zhou , Y. et al. ( 2021 ). Tin halide perovskite solar cells: an emerging thin-film photovoltaic technology . Account Materials Research 2 : 210 – 219 . 10.1021/accountsmr.0c00111 CASGoogle Scholar Zang , Z.H. , Li , H.S. , Jiang , X.Y. , and Ning , Z.J. ( 2021 ). Progress and perspective of tin perovskite solar cells . Acta Physico-Chimica Sinica 37 : 2007090 . Google Scholar Zhang , T. , Sun , Q. , Zhang , X.L. et al. ( 2021 ). Minimizing energy loss in two-dimensional tin halide perovskite solar cells-A perspective . APL Materials 9 : 020906 . 10.1063/5.0039291 Google Scholar Shockley , W. and Queisser , H.J. ( 1961 ). Detailed balance limit of efficiency of p-n junction solar cells . Applied Physics Letters 32 : 510 – 519 . CASGoogle Scholar Diau , E.W.-G. , Jokar , E. , and Rameez , M. ( 2019 ). Strategies to improve performance and stability for tin-based perovskite solar cells . ACS Energy Letters 4 : 1930 – 1937 . 10.1021/acsenergylett.9b01179 CASWeb of Science®Google Scholar Liao , Y. , Liu , H. , Zhou , W. et al. ( 2017 ). Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance . Journal of the American Chemical Society 139 : 6693 – 6699 . 10.1021/jacs.7b01815 CASPubMedWeb of Science®Google Scholar Wang , F. , Jiang , X.Y. , Chen , H. et al. ( 2018 ). 2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability . Joule 2 : 2732 – 2743 . 10.1016/j.joule.2018.09.012 CASWeb of Science®Google Scholar Shao , S.Y. , Liu , J. , Portale , G. et al. ( 2018 ). Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency . Advanced Energy Materials 8 : 1702019 . 10.1002/aenm.201702019 Web of Science®Google Scholar Jokar , E. , Chien , C.H. , Tsai , C.M. et al. ( 2019 ). Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10 . Advanced Materials 31 : e1804835 . 10.1002/adma.201804835 PubMedGoogle Scholar Jiang , X. , Wang , F. , Wei , Q. et al. ( 2020 ). Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design . Nature Communications 11 : 1 – 7 . PubMedGoogle Scholar Jiang , X. , Li , H. , Zhou , Q. et al. ( 2021 ). One-step synthesis of SnI 2 .(DMSO) x adducts for high-performance tin perovskite solar cells . Journal of the American Chemical Society 143 : 10970 – 10976 . 10.1021/jacs.1c03032 CASPubMedWeb of Science®Google Scholar Chen , M. , Ju , M.G. , Garces , H.F. et al. ( 2019 ). Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation . Nature Communications 10 : 1 – 8 . PubMedGoogle Scholar Goldschmidt , V.M. ( 1926 ). Die Gesetze der Krystallochemie . Die Naturwissenschaften 14 : 477 – 485 . 10.1007/BF01507527 CASWeb of Science®Google Scholar Zhou , Y.Y. and Zhao , Y.X. ( 2019 ). Chemical stability and instability of inorganic halide perovskites . Energy & Environmental Science 12 : 1495 – 1511 . 10.1039/C8EE03559H CASWeb of Science®Google Scholar Sabba , D. , Mulmudi , H.K. , Prabhakar , R.R. et al. ( 2015 ). Impact of anionic Br-substitution on open circuit voltage in lead free perovskite (CsSnI 3-x Br x ) solar cells . Journal of Physical Chemistry C 119 : 1763 – 1767 . 10.1021/jp5126624 CASWeb of Science®Google Scholar Stoumpos , C.C. , Malliakas , C.D. , and Kanatzidis , M.G. ( 2013 ). Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties . Inorganic Chemistry 52 : 9019 – 9038 . 10.1021/ic401215x CASPubMedWeb of Science®Google Scholar Pitaro , M. , Tekelenburg , E.K. , Shao , S. , and Loi , M.A. ( 2021 ). Tin halide perovskites: from fundamental properties to solar cells . Advanced Materials e2105844 . PubMedGoogle Scholar Umari , P. , Mosconi , E. , and De Angelis , F. ( 2014 ). Relativistic GW calculations on CH 3 NH 3 PbI 3 and CH 3 NH 3 SnI 3 perovskites for solar cell applications . Scientific Reports 4 : 4467 . 10.1038/srep04467 CASPubMedWeb of Science®Google Scholar Goyal , A. , McKechnie , S. , Pashov , D. et al. ( 2018 ). Origin of pronounced nonlinear band gap behavior in lead-tin hybrid perovskite alloys . Chemistry of Materials 30 : 3920 – 3928 . 10.1021/acs.chemmater.8b01695 CASWeb of Science®Google Scholar Lanzetta , L. , Webb , T. , Zibouche , N. et al. ( 2021 ). Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide . Nature Communications 12 : 1 – 11 . 10.1038/s41467-021-22864-z PubMedGoogle Scholar Handa , T. , Yamada , T. , Kubota , H. et al. ( 2017 ). Photocarrier recombination and injection dynamics in long-term stable lead-free CH 3 NH 3 SnI 3 perovskite thin films and solar cells . Journal of Physical Chemistry C 121 : 16158 – 16165 . 10.1021/acs.jpcc.7b06199 CASWeb of Science®Google Scholar Nishimura , K. , Hirotani , D. , Kamarudin , M.A. et al. ( 2019 ). Relationship between lattice strain and efficiency for Sn-perovskite solar cells . ACS Applied Materials & Interfaces 11 : 31105 – 31110 . 10.1021/acsami.9b09564 CASPubMedWeb of Science®Google Scholar Hao , F. , Stoumpos , C.C. , Cao , D.H. et al. ( 2014 ). Lead-free solid-state organic-inorganic halide perovskite solar cells . Nature Photonics 8 : 489 – 494 . 10.1038/nphoton.2014.82 CASWeb of Science®Google Scholar Huang , L.-y. and Lambrecht , W.R.L. ( 2013 ). Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl 3 , CsSnBr 3 , and CsSnI 3 . Physical Review B 88 : 165203 . 10.1103/PhysRevB.88.165203 Google Scholar Li , B. , Long , R. , Xia , Y. , and Mi , Q. ( 2018 ). All-inorganic perovskite CsSnBr 3 as a thermally stable, free-carrier semiconductor . Angewandte Chemie, International Edition 57 : 13154 – 13158 . 10.1002/anie.201807674 CASPubMedWeb of Science®Google Scholar Chung , I. , Lee , B. , He , J. et al. ( 2012 ). All-solid-state dye-sensitized solar cells with high efficiency . Nature 485 : 486 – 489 . 10.1038/nature11067 CASPubMedWeb of Science®Google Scholar Zhu , Z. and Mi , Q. ( 2021 ). Substituted thiourea as versatile ligands for crystallization control and surface passivation of tin-based perovskite . Cell Reports Physical Science 3 : 100690 . PubMedGoogle Scholar Ng , C.H. , Nishimura , K. , Ito , N. et al. ( 2019 ). Role of GeI 2 and SnF 2 additives for SnGe perovskite solar cells . Nano Energy 58 : 130 – 137 . 10.1016/j.nanoen.2019.01.026 CASWeb of Science®Google Scholar Milot , R.L. , Klug , M.T. , Davies , C.L. et al. ( 2018 ). The effects of doping density and temperature on the optoelectronic properties of formamidinium tin triiodide thin films . Advanced Materials 30 : e1804506 . 10.1002/adma.201804506 PubMedGoogle Scholar Noel , N.K. , Stranks , S.D. , Abate , A. et al. ( 2014 ). Lead-free organic-inorganic tin halide perovskites for photovoltaic applications . Energy & Environmental Science 7 : 3061 – 3068 . 10.1039/C4EE01076K CASWeb of Science®Google Scholar Poli , I. , Kim , G.W. , Wong , E.L. et al. ( 2021 ). High external photoluminescence quantum yield in tin halide perovskite thin films . ACS Energy Letters 6 : 609 – 611 . 10.1021/acsenergylett.0c02612 CASPubMedWeb of Science®Google Scholar Mahata , A. , Meggiolaro , D. , Gregori , L. , and De Angelis , F. ( 2021 ). Suppression of tin oxidation by 3D/2D perovskite interfacing . Journal of Physical Chemistry C 125 : 10901 – 10908 . 10.1021/acs.jpcc.1c02686 CASWeb of Science®Google Scholar Ambrosio , F. , Meggiolaro , D. , Almutairi , T.M. , and De Angelis , F. ( 2021 ). Composition-dependent struggle between iodine and tin chemistry at the surface of mixed tin/lead perovskites . ACS Energy Letters 6 : 969 – 976 . 10.1021/acsenergylett.1c00111 CASWeb of Science®Google Scholar Meggiolaro , D. , Ricciarelli , D. , Alasmari , A.A. et al. ( 2020 ). Tin versus lead redox chemistry modulates charge trapping and self-doping in tin/lead iodide perovskites . Journal of Physical Chemistry Letters 11 : 3546 – 3556 . 10.1021/acs.jpclett.0c00725 CASPubMedWeb of Science®Google Scholar Yan , Y. , Pullerits , T. , Zheng , K. , and Liang , Z. ( 2020 ). Advancing tin halide perovskites: strategies toward the ASnX 3 paradigm for efficient and durable optoelectronics . ACS Energy Letters 5 : 2052 – 2086 . 10.1021/acsenergylett.0c00577 CASWeb of Science®Google Scholar Hao , F. , Stoumpos , C.C. , Guo , P. et al. ( 2015 ). Solvent-mediated crystallization of CH 3 NH 3 SnI 3 films for heterojunction depleted perovskite solar cells . Journal of the American Chemical Society 137 : 11445 – 11452 . 10.1021/jacs.5b06658 CASPubMedWeb of Science®Google Scholar Wang , P. , Li , F. , Jiang , K.J. et al. ( 2020 ). Ion exchange/insertion reactions for fabrication of efficient methylammonium tin iodide perovskite solar cells . Advancement of Science 7 : 1903047 . 10.1002/advs.201903047 CASGoogle Scholar Koh , T.M. , Krishnamoorthy , T. , Yantara , N. et al. ( 2015 ). Formamidinium tin-based perovskite with low Eg for photovoltaic applications . Journal of Materials Chemistry A 3 : 14996 – 15000 . 10.1039/C5TA00190K CASWeb of Science®Google Scholar Lee , S.J. , Shin , S.S. , Kim , Y.C. et al. ( 2016 ). Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF(2)-pyrazine complex . Journal of the American Chemical Society 138 : 3974 – 3977 . 10.1021/jacs.6b00142 CASPubMedWeb of Science®Google Scholar Liao , W. , Zhao , D. , Yu , Y. et al. ( 2016 ). Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22% . Advanced Materials 28 : 9333 – 9340 . 10.1002/adma.201602992 CASPubMedWeb of Science®Google Scholar Zhao , Z. , Gu , F. , Li , Y. et al. ( 2017 ). Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12 . Advancement of Science 4 : 1700204 . 10.1002/advs.201700204 Google Scholar Meng , X. , Lin , J. , Liu , X. et al. ( 2019 ). Highly stable and efficient FASnI 3 -based perovskite solar cells by introducing hydrogen bonding . Advanced Materials 31 : e1903721 . 10.1002/adma.201903721 Google Scholar Liu , X. , Wang , Y. , Wu , T. et al. ( 2020 ). Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure . Nature Communications 11 : 1 – 7 . CASPubMedGoogle Scholar Nishimura , K. , Kamarudin , M.A. , Hirotani , D. et al. ( 2020 ). Lead-free tin-halide perovskite solar cells with 13% efficiency . Nano Energy 74 : 104858 . 10.1016/j.nanoen.2020.104858 PubMedWeb of Science®Google Scholar Wei , Q. , Ke , Y.Q. , and Ning , Z.J. ( 2020 ). Theoretical study of using kinetics strategy to enhance the stability of tin perovskite . Energy & Environmental Science 3 : 541 – 547 . CASGoogle Scholar Chen , Z. , Wang , J.J. , Ren , Y. et al. ( 2012 ). Schottky solar cells based on CsSnI 3 thin-films . Applied Physics Letters 101 : 093901 . Google Scholar Moghe , D. , Wang , L.L. , Traverse , C.J. et al. ( 2016 ). All vapor-deposited lead-free doped CsSnBr 3 planar solar cells . Nano Energy 28 : 469 – 474 . 10.1016/j.nanoen.2016.09.009 CASWeb of Science®Google Scholar Heo , J.H. , Kim , J. , Kim , H. et al. ( 2018 ). Roles of SnX 2 (X = F, Cl, Br) additives in tin-based halide perovskites toward highly efficient and stable lead-free perovskite solar cells . Journal of Physical Chemistry Letters 9 : 6024 – 6031 . 10.1021/acs.jpclett.8b02555 CASPubMedWeb of Science®Google Scholar Song , T.B. , Yokoyama , T. , Aramaki , S. , and Kanatzidis , M.G. ( 2017 ). Performance enhancement of lead-free tin based perovskite solar cells with reducing atmosphere-assisted dispersible additive . ACS Energy Letters 2 : 897 – 903 . 10.1021/acsenergylett.7b00171 CASWeb of Science®Google Scholar Li , B. , Di , H.X. , Chang , B.H. et al. ( 2021 ). Efficient passivation strategy on sn related defects for high performance all-inorganic CsSnI 3 perovskite solar cells . Advanced Energy Materials 31 : 2007447 . 10.1002/adfm.202007447 CASGoogle Scholar Ye , T. , Wang , X.Z. , Wang , K. et al. ( 2021 ). Localized electron density engineering for stabilized B-gamma CsSnI 3 -based perovskite solar cells with efficiencies > 10% . ACS Energy Letters 6 : 1480 – 1489 . 10.1021/acsenergylett.1c00342 CASWeb of Science®Google Scholar Lin , J.T. , Chu , T.C. , Chen , D.G. et al. ( 2021 ). Vertical 2D/3D heterojunction of tin perovskites for highly efficient HTM-free perovskite solar cell . ACS Applied Energy Materials 4 : 2041 – 2048 . 10.1021/acsaem.0c02451 CASWeb of Science®Google Scholar Kayesh , M.E. , Matsuishi , K. , Kaneko , R. et al. ( 2018 ). Coadditive engineering with 5-ammonium valeric acid iodide for efficient and stable Sn perovskite solar cells . ACS Energy Letters 4 : 278 – 284 . 10.1021/acsenergylett.8b02216 Web of Science®Google Scholar Chen , M. , Ju , M.-G. , Hu , M. et al. ( 2018 ). Lead-free Dion–Jacobson tin halide perovskites for photovoltaics . ACS Energy Letters 4 : 276 – 277 . 10.1021/acsenergylett.8b02051 Web of Science®Google Scholar Chen , M. , Dong , Q. , Eickemeyer , F.T. et al. ( 2020 ). High-performance lead-free solar cells based on tin-halide perovskite thin films functionalized by a divalent organic cation . ACS Energy Letters 5 : 2223 – 2230 . 10.1021/acsenergylett.0c00888 CASWeb of Science®Google Scholar Li , P. , Liu , X. , Zhang , Y. et al. ( 2020 ). Low-dimensional Dion-Jacobson-phase lead-free perovskites for high-performance photovoltaics with improved stability . Angewandte Chemie, International Edition 59 : 6909 – 6914 . 10.1002/anie.202000460 CASPubMedWeb of Science®Google Scholar Li , H.S. , Jiang , X.Y. , Wei , Q. et al. ( 2021 ). Low-dimensional inorganic tin perovskite solar cells prepared by templated growth . Angewandte Chemie, International Edition 60 : 16330 – 16336 . 10.1002/anie.202104958 CASPubMedWeb of Science®Google Scholar Kim , H. , Lee , Y.H. , Lyu , T. et al. ( 2018 ). Boosting the performance and stability of quasi-two-dimensional tin-based perovskite solar cells using the formamidinium thiocyanate additive . Journal of Materials Chemistry A 6 : 18173 – 18182 . 10.1039/C8TA05916K CASWeb of Science®Google Scholar Xu , H.Y. , Jiang , Y.Z. , He , T.W. et al. ( 2019 ). Orientation regulation of tin-based reduced-dimensional perovskites for highly efficient and stable photovoltaics . Advanced Functional Materials 29 : 1807696 . 10.1002/adfm.201807696 CASWeb of Science®Google Scholar Wu , T. , Liu , X. , He , X. et al. ( 2019 ). Efficient and stable tin-based perovskite solar cells by introducing π-conjugated Lewis base . Science China. Chemistry 63 : 107 – 115 . 10.1007/s11426-019-9653-8 Web of Science®Google Scholar Gu , F.D. , Ye , S.Y. , Zhao , Z.R. et al. ( 2018 ). Improving performance of lead-free formamidinium tin triiodide perovskite solar cells by tin source purification . Sol. RRL 2 : 1800136 . 10.1002/solr.201800136 Web of Science®Google Scholar Nakamura , T. , Yakumaru , S. , Truong , M.A. et al. ( 2020 ). Sn(IV)-free tin perovskite films realized by in situ Sn(0) nanoparticle treatment of the precursor solution . Nature Communications 11 : 1 – 8 . 10.1038/s41467-020-16726-3 PubMedWeb of Science®Google Scholar Meng , X. , Wu , T. , Liu , X. et al. ( 2020 ). Highly reproducible and efficient FASnI 3 perovskite solar cells fabricated with volatilizable reducing solvent . Journal of Physical Chemistry Letters 11 : 2965 – 2971 . 10.1021/acs.jpclett.0c00923 CASPubMedWeb of Science®Google Scholar Song , T.B. , Yokoyama , T. , Stoumpos , C.C. et al. ( 2017 ). Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells . Journal of the American Chemical Society 139 : 836 – 842 . 10.1021/jacs.6b10734 CASPubMedWeb of Science®Google Scholar Tai , Q. , Guo , X. , Tang , G. et al. ( 2019 ). Antioxidant grain passivation for air-stable tin-based perovskite solar cells . Angewandte Chemie, International Edition 58 : 806 – 810 . 10.1002/anie.201811539 CASPubMedWeb of Science®Google Scholar Wang , C. , Zhang , Y. , Gu , F. et al. ( 2021 ). Illumination durability and high-efficiency Sn-based perovskite solar cell under coordinated control of phenylhydrazine and halogen ions . Matter 4 : 709 – 721 . 10.1016/j.matt.2020.11.012 CASGoogle Scholar Chen , K. , Wu , P. , Yang , W. et al. ( 2018 ). Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells . Nano Energy 49 : 411 – 418 . 10.1016/j.nanoen.2018.05.006 CASWeb of Science®Google Scholar Yin , Y. , Wang , M. , Malgras , V. , and Yamauchi , Y. ( 2020 ). Stable and efficient tin-based perovskite solar cell via semiconducting–insulating structure . ACS Applied Energy Materials 3 : 10447 – 10452 . 10.1021/acsaem.0c01422 CASWeb of Science®Google Scholar Liu , G. , Liu , C. , Lin , Z. et al. ( 2020 ). Regulated crystallization of efficient and stable tin-based perovskite solar cells via a self-sealing polymer . ACS Applied Energy Materials 12 : 14049 – 14056 . 10.1021/acsami.0c01311 CASGoogle Scholar Konstantakou , M. and Stergiopoulos , T. ( 2017 ). A critical review on tin halide perovskite solar cells . Journal of Materials Chemistry A 5 : 11518 – 11549 . 10.1039/C7TA00929A CASWeb of Science®Google Scholar Nishikubo , R. , Ishida , N. , Katsuki , Y. et al. ( 2017 ). Minute-scale degradation and shift of valence-band maxima of (CH 3 NH 3 )SnI 3 and HC(NH 2 ) 2 SnI 3 perovskites upon air exposure . Journal of Physical Chemistry C 121 : 19650 – 19656 . 10.1021/acs.jpcc.7b06294 CASWeb of Science®Google Scholar Halide Perovskite Semiconductors: Structures, Characterization, Properties, and Phenomena ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YYJ发布了新的文献求助10
刚刚
1秒前
刻苦惊蛰完成签到 ,获得积分10
1秒前
2秒前
祖宁完成签到,获得积分10
3秒前
cmq完成签到 ,获得积分10
3秒前
周老八完成签到,获得积分10
4秒前
4秒前
1033sry完成签到,获得积分10
6秒前
7秒前
123完成签到,获得积分10
7秒前
8秒前
假面绅士完成签到,获得积分10
8秒前
斯文败类应助YYJ采纳,获得10
8秒前
脑洞疼应助ziyue采纳,获得10
10秒前
SHD完成签到 ,获得积分10
11秒前
LI发布了新的文献求助10
11秒前
Owen应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
SCINEXUS应助科研通管家采纳,获得30
12秒前
英姑应助科研通管家采纳,获得10
12秒前
leehoo完成签到,获得积分10
13秒前
胡杨关注了科研通微信公众号
15秒前
Lucas应助家家采纳,获得10
16秒前
17秒前
18秒前
范瑞文关注了科研通微信公众号
18秒前
调皮的篮球完成签到,获得积分20
21秒前
852应助浑水摸余女士采纳,获得10
21秒前
22秒前
鲤鱼新竹完成签到,获得积分10
23秒前
传奇3应助6_6采纳,获得10
26秒前
鲤鱼新竹发布了新的文献求助10
28秒前
31秒前
31秒前
33秒前
33秒前
33秒前
高兴亦云完成签到 ,获得积分10
34秒前
戈多完成签到,获得积分10
34秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082546
求助须知:如何正确求助?哪些是违规求助? 2735785
关于积分的说明 7538956
捐赠科研通 2385412
什么是DOI,文献DOI怎么找? 1264844
科研通“疑难数据库(出版商)”最低求助积分说明 612817
版权声明 597672