Prediction interaction responses between railway subgrade and shield tunnelling using machine learning with sparrow search algorithm

路基 人工神经网络 支持向量机 算法 结算(财务) 护盾 人工智能 机器学习 计算机科学 工程类 结构工程 地质学 岩石学 万维网 付款
作者
Xiang Liu,K. Li,Annan Jiang,Qian Fang,Rui Zhang
出处
期刊:Transportation geotechnics [Elsevier]
卷期号:44: 101169-101169
标识
DOI:10.1016/j.trgeo.2023.101169
摘要

Tunnelling-induced uneven ground structure settlement is a hot research topic involving various interrelated factors. This paper employs hybrid algorithms to establish the predictive model for the interaction responses, including maximum settlements, the longitudinal settlement curve, and the shield operational parameters. We choose four machine learning (ML) models: back-propagation neural network (BPNN), long short-term memory neural network (LSTM), least squares support vector machine (LS-SVM), and deep extreme learning machine (DELM). The sparrow search algorithm (SSA) searches for optimal hyperparameter combinations to improve prediction performance. We comprehensively compare the above models' accuracy and generalization ability for different predicting objects. The database used in this study is collected from a subway project in Beijing, China, where the excavation of twin shield tunnels caused subgrade differential settlements on four national railway lines. The in-situ data from the right line of twin shield tunnels is used to train and test the models, while that from the left line is applied to verify the generalization ability of the models. The DELM-SSA model performs well in predicting maximum settlement, while the LSTM-SSA model excels at predicting shield operational parameters. The LS-SVM-SSA model accurately predicts the monitoring points' longitudinal settlement curve. According to the results, different models are recommended for predicting the interaction responses. The analysis of the Pearson correlation coefficient also reveals that shield operational parameters, such as shield driving speed (Sds) and cutterhead rotational speed (Crs), correlate relatively strongly with the settlement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
打打应助千迁jiu采纳,获得10
2秒前
2秒前
3秒前
谨慎山彤发布了新的文献求助10
4秒前
slp发布了新的文献求助10
5秒前
安然发布了新的文献求助10
5秒前
5秒前
NZH发布了新的文献求助10
6秒前
6秒前
kaww发布了新的文献求助10
7秒前
醉熏的井发布了新的文献求助100
9秒前
9秒前
9秒前
oceanao应助slp采纳,获得10
11秒前
Anqi完成签到 ,获得积分10
11秒前
干净的时光应助kaww采纳,获得20
13秒前
秋梧发布了新的文献求助10
13秒前
bkagyin应助mygod采纳,获得10
14秒前
14秒前
小水泥发布了新的文献求助10
16秒前
17秒前
NZH关闭了NZH文献求助
20秒前
Licyan完成签到,获得积分10
20秒前
科研通AI2S应助镁铝采纳,获得10
20秒前
20秒前
21秒前
Akim应助露似珍珠月似弓采纳,获得10
24秒前
醉熏的井发布了新的文献求助10
24秒前
ZYH发布了新的文献求助10
26秒前
liian7应助KYDL采纳,获得20
32秒前
小马甲应助yayan采纳,获得10
34秒前
萤火虫发布了新的文献求助10
35秒前
12345完成签到,获得积分10
36秒前
39秒前
40秒前
醉熏的井发布了新的文献求助10
41秒前
半个丸子发布了新的文献求助10
42秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161007
求助须知:如何正确求助?哪些是违规求助? 2812335
关于积分的说明 7895242
捐赠科研通 2471208
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631071
版权声明 602086