Lost in Context? On the Sense-Wise Variance of Contextualized Word Embeddings

多义 背景(考古学) 计算机科学 词(群论) 差异(会计) 判决 自然语言处理 代表(政治) 一致性(知识库) 人工智能 光学(聚焦) 语言学 古生物学 哲学 物理 会计 光学 政治 政治学 法学 业务 生物
作者
Yile Wang,Yue Zhang
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 639-650
标识
DOI:10.1109/taslp.2023.3337643
摘要

Contextualized word embeddings in language models have given much advance to NLP. Intuitively, sentential information is integrated into the representation of words, which can help model polysemy. However, context sensitivity also leads to the variance of representations, which may break the semantic consistency for synonyms. Previous works that investigate contextualized sensitivity focus on the token level representations, while we are taking a deeper dive into exploring representations at the fine-grained sense level. In particular, we quantify how much the contextualized embeddings of each word sense vary across contexts in typical pre-trained models, the results show that contextualized embeddings can be highly consistent across contexts, even for two different words with the same sense. In addition, part-of-speech, number of word senses, and sentence length have an influence on the variance of sense representations. Interestingly, we find that word representations are position-biased, where the first words in different contexts tend to be more similar. We analyze such a phenomenon and also propose a prompt-augmentation method to alleviate such bias in distance-based word sense disambiguation settings. Finally, we investigate the influence of sense-level pre-training on the performance of different downstream tasks, results show that such external tasks can improve the sense- and syntactic-related tasks, while not necessarily benefiting general language understanding tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liixy发布了新的文献求助10
刚刚
shifeng发布了新的文献求助10
1秒前
1秒前
星辰大海应助可与采纳,获得10
1秒前
tomato完成签到,获得积分10
1秒前
Orange应助顾霜凌采纳,获得10
2秒前
丘比特应助静1111采纳,获得30
2秒前
zhangyu应助顾霜凌采纳,获得10
2秒前
柏林寒冬应助顾霜凌采纳,获得10
2秒前
欢喜藏今发布了新的文献求助10
2秒前
nini发布了新的文献求助10
2秒前
任性唇膏完成签到,获得积分10
2秒前
小饭团子发布了新的文献求助10
3秒前
天天天王完成签到,获得积分10
3秒前
4秒前
zhangyu应助cc采纳,获得30
4秒前
5eV发布了新的文献求助10
4秒前
巫马荧发布了新的文献求助10
6秒前
123关闭了123文献求助
6秒前
嘿咻丶嘿哈完成签到,获得积分10
7秒前
W~舞发布了新的文献求助10
8秒前
丘比特应助医学院小天才采纳,获得10
9秒前
9秒前
缥缈的寻琴应助贪玩阑香采纳,获得10
9秒前
10秒前
玛卡巴卡完成签到,获得积分10
11秒前
momo发布了新的文献求助10
11秒前
欢喜藏今完成签到,获得积分10
11秒前
HE完成签到,获得积分10
11秒前
kosmos完成签到,获得积分10
12秒前
12秒前
12秒前
无花果应助何困困不困采纳,获得10
13秒前
完美世界应助IUIU采纳,获得20
13秒前
meier1206完成签到,获得积分10
13秒前
nini完成签到,获得积分20
14秒前
思源应助嘿咻丶嘿哈采纳,获得10
15秒前
马大勺发布了新的文献求助10
15秒前
无问西东完成签到,获得积分0
15秒前
小咩发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014