Natural history and growth prediction model of pancreatic serous cystic neoplasms

医学 囊肿 放射科 浆液性液体 金标准(测试) 外科 内科学
作者
Jenny H. Chang,Breanna Perlmutter,Chase J. Wehrle,Robert Naples,Kathryn A. Stackhouse,John McMichael,Chao Tu,Samer A. Naffouje,Toms Augustin,Daniel Joyce,Róbert Simon,R. Matthew Walsh
出处
期刊:Pancreatology [Elsevier BV]
卷期号:24 (3): 489-492
标识
DOI:10.1016/j.pan.2024.02.016
摘要

Serous cystic neoplasms (SCN) are benign pancreatic cystic neoplasms that may require resection based on local complications and rate of growth. We aimed to develop a predictive model for the growth curve of SCNs to aid in the clinical decision making of determining need for surgical resection. Utilizing a prospectively maintained pancreatic cyst database from a single institution, patients with SCNs were identified. Diagnosis confirmation included imaging, cyst aspiration, pathology, or expert opinion. Cyst size diameter was measured by radiology or surgery. Patients with interval imaging ≥3 months from diagnosis were included. Flexible restricted cubic splines were utilized for modeling of non-linearities in time and previous measurements. Model fitting and analysis were performed using R (V3.50, Vienna, Austria) with the rms package. Among 203 eligible patients from 1998 to 2021, the mean initial cyst size was 31 mm (range 5–160 mm), with a mean follow-up of 72 months (range 3–266 months). The model effectively captured the non-linear relationship between cyst size and time, with both time and previous cyst size (not initial cyst size) significantly predicting current cyst growth (p < 0.01). The root mean square error for overall prediction was 10.74. Validation through bootstrapping demonstrated consistent performance, particularly for shorter follow-up intervals. SCNs typically have a similar growth rate regardless of initial size. An accurate predictive model can be used to identify rapidly growing outliers that may warrant surgical intervention, and this free model (https://riskcalc.org/SerousCystadenomaSize/) can be incorporated in the electronic medical record.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
prof.zhang完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
FashionBoy应助UGO采纳,获得10
3秒前
10秒前
liguanyu1078完成签到,获得积分10
11秒前
UGO发布了新的文献求助10
15秒前
Alan完成签到 ,获得积分10
16秒前
闫佳美完成签到,获得积分10
25秒前
千殇完成签到,获得积分20
26秒前
现实的曼安完成签到 ,获得积分10
30秒前
火星上的雨柏完成签到,获得积分10
32秒前
33秒前
lighting完成签到 ,获得积分10
33秒前
xuan完成签到,获得积分10
35秒前
萝卜丁完成签到 ,获得积分0
35秒前
优雅的平安完成签到 ,获得积分10
36秒前
量子星尘发布了新的文献求助10
38秒前
ni完成签到 ,获得积分10
41秒前
CH完成签到,获得积分10
43秒前
优雅莞完成签到,获得积分10
45秒前
糊涂的大碗完成签到 ,获得积分10
45秒前
郦稀完成签到 ,获得积分10
47秒前
jia完成签到 ,获得积分10
49秒前
奔流的河完成签到,获得积分10
52秒前
如意枫叶发布了新的文献求助10
58秒前
mojito完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
六叶草完成签到,获得积分10
1分钟前
1分钟前
tian发布了新的文献求助10
1分钟前
红毛兔完成签到 ,获得积分10
1分钟前
隐形曼青应助如意枫叶采纳,获得10
1分钟前
可罗雀完成签到,获得积分10
1分钟前
UGO发布了新的文献求助10
1分钟前
duxh123完成签到 ,获得积分10
1分钟前
美好灵寒完成签到 ,获得积分10
1分钟前
包子完成签到,获得积分10
1分钟前
胡胡完成签到 ,获得积分10
1分钟前
daqing1725完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957123
求助须知:如何正确求助?哪些是违规求助? 3503185
关于积分的说明 11111449
捐赠科研通 3234227
什么是DOI,文献DOI怎么找? 1787829
邀请新用户注册赠送积分活动 870783
科研通“疑难数据库(出版商)”最低求助积分说明 802318