高光谱成像
计算机科学
人工智能
模式识别(心理学)
聚类分析
图形
子空间拓扑
理论计算机科学
作者
Renxiang Guan,Zihao Li,Wenxuan Tu,Jun Wang,Yue Liu,Xianju Li,Chang Tang,Ruyi Feng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:62: 1-14
被引量:34
标识
DOI:10.1109/tgrs.2024.3370633
摘要
High-dimensional and complex spectral structures make the clustering of hyperspectral images (HSI) a challenging task. Subspace clustering is an effective approach for addressing this problem. However, current subspace clustering algorithms are primarily designed for a single view and do not fully exploit the spatial or textural feature information in HSI. In this study, contrastive multi-view subspace clustering of HSI was proposed based on graph convolutional networks. Pixel neighbor textural and spatial-spectral information were sent to construct two graph convolutional subspaces to learn their affinity matrices. To maximize the interaction between different views, a contrastive learning algorithm was introduced to promote the consistency of positive samples and assist the model in extracting robust features. An attention-based fusion module was used to adaptively integrate these affinity matrices, constructing a more discriminative affinity matrix. The model was evaluated using four popular HSI datasets: Indian Pines, Pavia University, Houston, and Xu Zhou. It achieved overall accuracies of 97.61%, 96.69%, 87.21%, and 97.65%, respectively, and significantly outperformed state-of-the-art clustering methods. In conclusion, the proposed model effectively improves the clustering accuracy of HSI. Our implementation is available at https://github.com/GuanRX/CMSCGC.
科研通智能强力驱动
Strongly Powered by AbleSci AI