已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantitative bias analysis for external control arms using real-world data in clinical trials: a primer for clinical researchers

稳健性(进化) 缺少数据 外部有效性 医学 混淆 样本量测定 人口 临床试验 数据收集 计算机科学 统计 机器学习 生物化学 化学 数学 环境卫生 病理 基因
作者
Kristian Thorlund,Stephen Duffield,Sanjay Popat,Sreeram V Ramagopalan,Alind Gupta,Grace Hsu,Paul Arora,Vivek Subbiah
出处
期刊:Journal of Comparative Effectiveness Research [Future Medicine]
卷期号:13 (3) 被引量:3
标识
DOI:10.57264/cer-2023-0147
摘要

Development of medicines in rare oncologic patient populations are growing, but well-powered randomized controlled trials are typically extremely challenging or unethical to conduct in such settings. External control arms using real-world data are increasingly used to supplement clinical trial evidence where no or little control arm data exists. The construction of an external control arm should always aim to match the population, treatment settings and outcome measurements of the corresponding treatment arm. Yet, external real-world data is typically fraught with limitations including missing data, measurement error and the potential for unmeasured confounding given a nonrandomized comparison. Quantitative bias analysis (QBA) comprises a collection of approaches for modelling the magnitude of systematic errors in data which cannot be addressed with conventional statistical adjustment. Their applications can range from simple deterministic equations to complex hierarchical models. QBA applied to external control arm represent an opportunity for evaluating the validity of the corresponding comparative efficacy estimates. We provide a brief overview of available QBA approaches and explore their application in practice. Using a motivating example of a comparison between pralsetinib single-arm trial data versus pembrolizumab alone or combined with chemotherapy real-world data for RET fusion-positive advanced non-small cell lung cancer (aNSCLC) patients (1–2% among all NSCLC), we illustrate how QBA can be applied to external control arms. We illustrate how QBA is used to ascertain robustness of results despite a large proportion of missing data on baseline ECOG performance status and suspicion of unknown confounding. The robustness of findings is illustrated by showing that no meaningful change to the comparative effect was observed across several ‘tipping-point’ scenario analyses, and by showing that suspicion of unknown confounding was ruled out by use of E-values. Full R code is also provided.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗条白枫完成签到 ,获得积分10
刚刚
qinxiang完成签到,获得积分10
1秒前
1秒前
Provence完成签到,获得积分10
2秒前
2秒前
润柏海完成签到 ,获得积分10
2秒前
刘可完成签到 ,获得积分10
3秒前
开放从波发布了新的文献求助10
5秒前
闻老头菊花碳完成签到,获得积分10
6秒前
自然听兰发布了新的文献求助10
6秒前
嘻嘻嘻发布了新的文献求助10
7秒前
可爱紫文完成签到 ,获得积分10
7秒前
7秒前
yoyo完成签到 ,获得积分10
8秒前
8秒前
酷波er应助shuiyu采纳,获得10
8秒前
tuanheqi发布了新的文献求助100
8秒前
忽远忽近的她完成签到 ,获得积分10
10秒前
等待的忆枫完成签到,获得积分10
11秒前
lxc发布了新的文献求助10
11秒前
xiaofan_www完成签到,获得积分10
11秒前
田様应助勤奋的熊猫采纳,获得10
12秒前
13秒前
13秒前
天才J完成签到,获得积分10
14秒前
云禾完成签到,获得积分10
19秒前
pppcpppdpppy完成签到,获得积分10
19秒前
19秒前
孙意冉完成签到,获得积分10
20秒前
fymshh发布了新的文献求助10
20秒前
treetree完成签到 ,获得积分10
20秒前
20秒前
Forez发布了新的文献求助10
21秒前
HaCat完成签到,获得积分10
21秒前
22秒前
23秒前
loser完成签到 ,获得积分10
23秒前
浮浮世世发布了新的文献求助10
23秒前
lxc完成签到,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650331
求助须知:如何正确求助?哪些是违规求助? 4780577
关于积分的说明 15051956
捐赠科研通 4809289
什么是DOI,文献DOI怎么找? 2572125
邀请新用户注册赠送积分活动 1528281
关于科研通互助平台的介绍 1487161