Quantitative bias analysis for external control arms using real-world data in clinical trials: a primer for clinical researchers

稳健性(进化) 缺少数据 外部有效性 医学 混淆 样本量测定 人口 临床试验 数据收集 计算机科学 统计 机器学习 基因 病理 环境卫生 化学 生物化学 数学
作者
Kristian Thorlund,Stephen Duffield,Sanjay Popat,Sreeram V Ramagopalan,Alind Gupta,Grace Hsu,Paul Arora,Vivek Subbiah
出处
期刊:Journal of Comparative Effectiveness Research [Future Medicine]
卷期号:13 (3) 被引量:3
标识
DOI:10.57264/cer-2023-0147
摘要

Development of medicines in rare oncologic patient populations are growing, but well-powered randomized controlled trials are typically extremely challenging or unethical to conduct in such settings. External control arms using real-world data are increasingly used to supplement clinical trial evidence where no or little control arm data exists. The construction of an external control arm should always aim to match the population, treatment settings and outcome measurements of the corresponding treatment arm. Yet, external real-world data is typically fraught with limitations including missing data, measurement error and the potential for unmeasured confounding given a nonrandomized comparison. Quantitative bias analysis (QBA) comprises a collection of approaches for modelling the magnitude of systematic errors in data which cannot be addressed with conventional statistical adjustment. Their applications can range from simple deterministic equations to complex hierarchical models. QBA applied to external control arm represent an opportunity for evaluating the validity of the corresponding comparative efficacy estimates. We provide a brief overview of available QBA approaches and explore their application in practice. Using a motivating example of a comparison between pralsetinib single-arm trial data versus pembrolizumab alone or combined with chemotherapy real-world data for RET fusion-positive advanced non-small cell lung cancer (aNSCLC) patients (1–2% among all NSCLC), we illustrate how QBA can be applied to external control arms. We illustrate how QBA is used to ascertain robustness of results despite a large proportion of missing data on baseline ECOG performance status and suspicion of unknown confounding. The robustness of findings is illustrated by showing that no meaningful change to the comparative effect was observed across several ‘tipping-point’ scenario analyses, and by showing that suspicion of unknown confounding was ruled out by use of E-values. Full R code is also provided.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
盐植物完成签到,获得积分10
1秒前
雨天完成签到,获得积分10
1秒前
yyc2023完成签到,获得积分10
2秒前
chase完成签到,获得积分20
2秒前
3秒前
人参跳芭蕾完成签到 ,获得积分10
3秒前
朝晖完成签到,获得积分10
5秒前
gzmejiji完成签到,获得积分10
5秒前
云淡风清完成签到 ,获得积分10
6秒前
8秒前
cn发布了新的文献求助10
8秒前
tdtk完成签到,获得积分10
8秒前
小二郎应助王照盼采纳,获得10
9秒前
9秒前
xdf完成签到,获得积分10
10秒前
小二点完成签到,获得积分0
10秒前
10秒前
TranYan完成签到,获得积分10
11秒前
choco1ate发布了新的文献求助10
12秒前
关键词完成签到,获得积分10
12秒前
llg发布了新的文献求助20
12秒前
刻苦绿柏发布了新的文献求助10
13秒前
Mr.Jian完成签到,获得积分10
13秒前
pengpeng完成签到,获得积分10
13秒前
xdf发布了新的文献求助30
13秒前
perovskite完成签到,获得积分10
13秒前
勤恳冰彤发布了新的文献求助10
13秒前
xly完成签到,获得积分10
14秒前
星海殇完成签到 ,获得积分0
15秒前
泉水叮咚发布了新的文献求助10
15秒前
Cloud应助大约在冬季采纳,获得10
15秒前
17秒前
licheng完成签到,获得积分10
17秒前
Plemon完成签到,获得积分10
18秒前
苏青舟完成签到 ,获得积分10
20秒前
脱壳金蝉完成签到,获得积分10
20秒前
东方傲儿完成签到,获得积分10
21秒前
咿呀完成签到,获得积分10
21秒前
chen发布了新的文献求助10
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099877
求助须知:如何正确求助?哪些是违规求助? 2751333
关于积分的说明 7612942
捐赠科研通 2403282
什么是DOI,文献DOI怎么找? 1275217
科研通“疑难数据库(出版商)”最低求助积分说明 616310
版权声明 599053