Quantitative bias analysis for external control arms using real-world data in clinical trials: a primer for clinical researchers

稳健性(进化) 缺少数据 外部有效性 医学 混淆 样本量测定 人口 临床试验 数据收集 计算机科学 统计 机器学习 生物化学 化学 数学 环境卫生 病理 基因
作者
Kristian Thorlund,Stephen Duffield,Sanjay Popat,Sreeram V Ramagopalan,Alind Gupta,Grace Hsu,Paul Arora,Vivek Subbiah
出处
期刊:Journal of Comparative Effectiveness Research [Future Medicine]
卷期号:13 (3) 被引量:3
标识
DOI:10.57264/cer-2023-0147
摘要

Development of medicines in rare oncologic patient populations are growing, but well-powered randomized controlled trials are typically extremely challenging or unethical to conduct in such settings. External control arms using real-world data are increasingly used to supplement clinical trial evidence where no or little control arm data exists. The construction of an external control arm should always aim to match the population, treatment settings and outcome measurements of the corresponding treatment arm. Yet, external real-world data is typically fraught with limitations including missing data, measurement error and the potential for unmeasured confounding given a nonrandomized comparison. Quantitative bias analysis (QBA) comprises a collection of approaches for modelling the magnitude of systematic errors in data which cannot be addressed with conventional statistical adjustment. Their applications can range from simple deterministic equations to complex hierarchical models. QBA applied to external control arm represent an opportunity for evaluating the validity of the corresponding comparative efficacy estimates. We provide a brief overview of available QBA approaches and explore their application in practice. Using a motivating example of a comparison between pralsetinib single-arm trial data versus pembrolizumab alone or combined with chemotherapy real-world data for RET fusion-positive advanced non-small cell lung cancer (aNSCLC) patients (1–2% among all NSCLC), we illustrate how QBA can be applied to external control arms. We illustrate how QBA is used to ascertain robustness of results despite a large proportion of missing data on baseline ECOG performance status and suspicion of unknown confounding. The robustness of findings is illustrated by showing that no meaningful change to the comparative effect was observed across several ‘tipping-point’ scenario analyses, and by showing that suspicion of unknown confounding was ruled out by use of E-values. Full R code is also provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
VDC应助科研通管家采纳,获得20
1秒前
HAL应助科研通管家采纳,获得10
1秒前
非而者厚应助科研通管家采纳,获得10
1秒前
非而者厚应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
非而者厚应助科研通管家采纳,获得10
1秒前
非而者厚应助科研通管家采纳,获得10
1秒前
非而者厚应助科研通管家采纳,获得10
1秒前
非而者厚应助科研通管家采纳,获得10
1秒前
非而者厚应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Hello应助迷你的依凝采纳,获得10
2秒前
2秒前
3秒前
3秒前
水怪啊发布了新的文献求助10
4秒前
205发布了新的文献求助10
5秒前
Lucas应助吕邓宏采纳,获得10
5秒前
七七完成签到 ,获得积分10
7秒前
王佳俊发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
大个应助wanwei采纳,获得10
7秒前
8秒前
9秒前
森森完成签到,获得积分10
9秒前
wb发布了新的文献求助10
9秒前
土豆淀粉发布了新的文献求助10
9秒前
10秒前
默问完成签到,获得积分10
11秒前
在水一方应助津海007采纳,获得10
11秒前
12秒前
瓜瓜发布了新的文献求助10
13秒前
小磊完成签到 ,获得积分10
13秒前
qingyu_Lin123发布了新的文献求助10
13秒前
14秒前
14秒前
squirrelcone发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601699
求助须知:如何正确求助?哪些是违规求助? 4011262
关于积分的说明 12418861
捐赠科研通 3691306
什么是DOI,文献DOI怎么找? 2035016
邀请新用户注册赠送积分活动 1068302
科研通“疑难数据库(出版商)”最低求助积分说明 952792