亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantitative bias analysis for external control arms using real-world data in clinical trials: a primer for clinical researchers

稳健性(进化) 缺少数据 外部有效性 医学 混淆 样本量测定 人口 临床试验 数据收集 计算机科学 统计 机器学习 生物化学 化学 数学 环境卫生 病理 基因
作者
Kristian Thorlund,Stephen Duffield,Sanjay Popat,Sreeram V Ramagopalan,Alind Gupta,Grace Hsu,Paul Arora,Vivek Subbiah
出处
期刊:Journal of Comparative Effectiveness Research [Future Medicine]
卷期号:13 (3) 被引量:3
标识
DOI:10.57264/cer-2023-0147
摘要

Development of medicines in rare oncologic patient populations are growing, but well-powered randomized controlled trials are typically extremely challenging or unethical to conduct in such settings. External control arms using real-world data are increasingly used to supplement clinical trial evidence where no or little control arm data exists. The construction of an external control arm should always aim to match the population, treatment settings and outcome measurements of the corresponding treatment arm. Yet, external real-world data is typically fraught with limitations including missing data, measurement error and the potential for unmeasured confounding given a nonrandomized comparison. Quantitative bias analysis (QBA) comprises a collection of approaches for modelling the magnitude of systematic errors in data which cannot be addressed with conventional statistical adjustment. Their applications can range from simple deterministic equations to complex hierarchical models. QBA applied to external control arm represent an opportunity for evaluating the validity of the corresponding comparative efficacy estimates. We provide a brief overview of available QBA approaches and explore their application in practice. Using a motivating example of a comparison between pralsetinib single-arm trial data versus pembrolizumab alone or combined with chemotherapy real-world data for RET fusion-positive advanced non-small cell lung cancer (aNSCLC) patients (1–2% among all NSCLC), we illustrate how QBA can be applied to external control arms. We illustrate how QBA is used to ascertain robustness of results despite a large proportion of missing data on baseline ECOG performance status and suspicion of unknown confounding. The robustness of findings is illustrated by showing that no meaningful change to the comparative effect was observed across several ‘tipping-point’ scenario analyses, and by showing that suspicion of unknown confounding was ruled out by use of E-values. Full R code is also provided.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
11秒前
田様应助白华苍松采纳,获得10
11秒前
13秒前
爆米花应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
迅速初柳发布了新的文献求助10
16秒前
darkpigx完成签到,获得积分10
17秒前
xintai完成签到,获得积分10
17秒前
我是老大应助迅速初柳采纳,获得10
21秒前
24秒前
郗妫完成签到,获得积分10
28秒前
回火青年完成签到,获得积分10
28秒前
30秒前
小年小少发布了新的文献求助10
39秒前
41秒前
dawnfrf应助沉默的倔驴采纳,获得30
42秒前
42秒前
Jasper应助komorebi采纳,获得10
43秒前
陳.发布了新的文献求助10
46秒前
55秒前
58秒前
Xyyy发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
01259完成签到 ,获得积分10
1分钟前
uu完成签到 ,获得积分10
1分钟前
Xyyy完成签到,获得积分10
1分钟前
鹿呦完成签到 ,获得积分10
1分钟前
1分钟前
深情安青应助Xyyy采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
ucas大菠萝完成签到,获得积分10
1分钟前
ysx完成签到 ,获得积分10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746540
求助须知:如何正确求助?哪些是违规求助? 5435517
关于积分的说明 15355531
捐赠科研通 4886528
什么是DOI,文献DOI怎么找? 2627297
邀请新用户注册赠送积分活动 1575762
关于科研通互助平台的介绍 1532510