Quantitative bias analysis for external control arms using real-world data in clinical trials: a primer for clinical researchers

稳健性(进化) 缺少数据 外部有效性 医学 混淆 样本量测定 人口 临床试验 数据收集 计算机科学 统计 机器学习 生物化学 化学 数学 环境卫生 病理 基因
作者
Kristian Thorlund,Stephen Duffield,Sanjay Popat,Sreeram V Ramagopalan,Alind Gupta,Grace Hsu,Paul Arora,Vivek Subbiah
出处
期刊:Journal of Comparative Effectiveness Research [Future Medicine]
卷期号:13 (3) 被引量:3
标识
DOI:10.57264/cer-2023-0147
摘要

Development of medicines in rare oncologic patient populations are growing, but well-powered randomized controlled trials are typically extremely challenging or unethical to conduct in such settings. External control arms using real-world data are increasingly used to supplement clinical trial evidence where no or little control arm data exists. The construction of an external control arm should always aim to match the population, treatment settings and outcome measurements of the corresponding treatment arm. Yet, external real-world data is typically fraught with limitations including missing data, measurement error and the potential for unmeasured confounding given a nonrandomized comparison. Quantitative bias analysis (QBA) comprises a collection of approaches for modelling the magnitude of systematic errors in data which cannot be addressed with conventional statistical adjustment. Their applications can range from simple deterministic equations to complex hierarchical models. QBA applied to external control arm represent an opportunity for evaluating the validity of the corresponding comparative efficacy estimates. We provide a brief overview of available QBA approaches and explore their application in practice. Using a motivating example of a comparison between pralsetinib single-arm trial data versus pembrolizumab alone or combined with chemotherapy real-world data for RET fusion-positive advanced non-small cell lung cancer (aNSCLC) patients (1–2% among all NSCLC), we illustrate how QBA can be applied to external control arms. We illustrate how QBA is used to ascertain robustness of results despite a large proportion of missing data on baseline ECOG performance status and suspicion of unknown confounding. The robustness of findings is illustrated by showing that no meaningful change to the comparative effect was observed across several ‘tipping-point’ scenario analyses, and by showing that suspicion of unknown confounding was ruled out by use of E-values. Full R code is also provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
一一应助科研通管家采纳,获得10
2秒前
wanci应助蓝蓝蓝采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
一一应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Priority应助科研通管家采纳,获得30
2秒前
Priority应助科研通管家采纳,获得30
2秒前
2秒前
一一应助科研通管家采纳,获得10
3秒前
liao应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
xxfsx应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
俭朴尔白应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
3秒前
xxfsx应助科研通管家采纳,获得10
3秒前
飞龙在天完成签到 ,获得积分10
3秒前
xxfsx应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
liao应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
一一应助科研通管家采纳,获得10
4秒前
xxfsx应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
一一应助科研通管家采纳,获得10
4秒前
4秒前
GQ完成签到,获得积分10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
FanFan应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462397
求助须知:如何正确求助?哪些是违规求助? 4567107
关于积分的说明 14308810
捐赠科研通 4492907
什么是DOI,文献DOI怎么找? 2461315
邀请新用户注册赠送积分活动 1450358
关于科研通互助平台的介绍 1425794