A Method for Deformation Detection and Reconstruction of Shield Tunnel Based on Point Cloud

点云 椭圆 计算机科学 护盾 变形(气象学) 点(几何) 计算机视觉 云计算 分割 人工智能 变形监测 算法 过程(计算) 几何学 地质学 数学 岩石学 海洋学 操作系统
作者
Yuxian Zhang,Xuhua Ren,Jixun Zhang,Zichang Ma
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (3) 被引量:14
标识
DOI:10.1061/jcemd4.coeng-14225
摘要

Detecting deformation and segment assembly quality in the construction or as-built phase of the shield tunnel is crucial and significant to ensure structural safety. The traditional detection methods consume much cost and are prone to errors. This study applies point cloud to develop robust algorithms for the deformation detection and reconstruction of shield tunnels. The methodology initially extracts the tunnel axis, serving as the base for deformation detection and reconstruction. A segmentation algorithm for continuous slice point clouds along the tunnel axis is proposed, and the deformation of the section is evaluated by ellipse fitting. In addition, a novel method of creating a binary image using the unrolled point cloud is adopted based on the extracted tunnel axis, and the segmentation of the segment point cloud is realized via image processing. This process is based on the geometric features of the unrolled point cloud, avoiding tedious parameter adjustment. Finally, a novel segment point cloud fitting method is used to create the as-built model of the tunnel in the BIM platform. To evaluate the performance of the proposed method, we select the shield tunnel case for experimental verification. The results show that (1) using point cloud information can realize an automated solution to complete the tunnel deformation detection task and meet accuracy requirements; and (2) the reconstruction method adopted in this study can realize the visualization of segment dislocation and has better efficiency and accuracy than previous algorithms. The work of this study has a certain guiding significance for the automated detection of the shield tunnel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
活泼的铃铛完成签到,获得积分20
1秒前
CipherSage应助愉快芜榆采纳,获得10
1秒前
juqiu发布了新的文献求助10
1秒前
1秒前
2秒前
Ava应助feizhuliu采纳,获得10
2秒前
lxy发布了新的文献求助10
2秒前
chenjunyong17完成签到,获得积分10
2秒前
悲凉的新筠完成签到,获得积分20
4秒前
乐天完成签到,获得积分10
4秒前
活泼听露发布了新的文献求助10
4秒前
5秒前
传奇3应助juqiu采纳,获得10
5秒前
隐形曼青应助sinlar采纳,获得10
5秒前
5秒前
张nmky完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
Hello应助沉静秋尽采纳,获得10
7秒前
Gc发布了新的文献求助10
8秒前
8秒前
biye完成签到 ,获得积分10
8秒前
8秒前
东糸容完成签到,获得积分10
9秒前
退休小行星完成签到,获得积分10
9秒前
勤恳易谙发布了新的文献求助10
10秒前
追梦1998发布了新的文献求助10
10秒前
siina发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
小姚完成签到,获得积分10
11秒前
12秒前
chen123发布了新的文献求助10
12秒前
zzmm发布了新的文献求助10
12秒前
昏睡的嵩应助羊羔蓉采纳,获得10
13秒前
llll完成签到 ,获得积分10
13秒前
feizhuliu完成签到,获得积分10
14秒前
helppppp发布了新的文献求助10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783962
求助须知:如何正确求助?哪些是违规求助? 5680156
关于积分的说明 15462775
捐赠科研通 4913312
什么是DOI,文献DOI怎么找? 2644592
邀请新用户注册赠送积分活动 1592399
关于科研通互助平台的介绍 1547026