A Method for Deformation Detection and Reconstruction of Shield Tunnel Based on Point Cloud

点云 椭圆 计算机科学 护盾 变形(气象学) 点(几何) 计算机视觉 云计算 分割 人工智能 变形监测 算法 过程(计算) 几何学 地质学 数学 岩石学 海洋学 操作系统
作者
Yuxian Zhang,Xuhua Ren,Jixun Zhang,Zichang Ma
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (3) 被引量:14
标识
DOI:10.1061/jcemd4.coeng-14225
摘要

Detecting deformation and segment assembly quality in the construction or as-built phase of the shield tunnel is crucial and significant to ensure structural safety. The traditional detection methods consume much cost and are prone to errors. This study applies point cloud to develop robust algorithms for the deformation detection and reconstruction of shield tunnels. The methodology initially extracts the tunnel axis, serving as the base for deformation detection and reconstruction. A segmentation algorithm for continuous slice point clouds along the tunnel axis is proposed, and the deformation of the section is evaluated by ellipse fitting. In addition, a novel method of creating a binary image using the unrolled point cloud is adopted based on the extracted tunnel axis, and the segmentation of the segment point cloud is realized via image processing. This process is based on the geometric features of the unrolled point cloud, avoiding tedious parameter adjustment. Finally, a novel segment point cloud fitting method is used to create the as-built model of the tunnel in the BIM platform. To evaluate the performance of the proposed method, we select the shield tunnel case for experimental verification. The results show that (1) using point cloud information can realize an automated solution to complete the tunnel deformation detection task and meet accuracy requirements; and (2) the reconstruction method adopted in this study can realize the visualization of segment dislocation and has better efficiency and accuracy than previous algorithms. The work of this study has a certain guiding significance for the automated detection of the shield tunnel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助季文婷采纳,获得10
1秒前
彧九发布了新的文献求助30
1秒前
1秒前
2秒前
2秒前
2秒前
忐忑的涛发布了新的文献求助10
2秒前
叶子宁发布了新的文献求助10
3秒前
djdsg完成签到,获得积分10
3秒前
xinxin发布了新的文献求助10
4秒前
4秒前
科研通AI6应助尘间雪采纳,获得10
4秒前
桐桐应助snowy_owl采纳,获得30
5秒前
5秒前
6秒前
6秒前
weifeng完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
djdsg发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
研友_LNMmW8发布了新的文献求助10
10秒前
11秒前
cym完成签到,获得积分10
11秒前
12秒前
12秒前
penguin发布了新的文献求助10
12秒前
阿碧发布了新的文献求助10
13秒前
weifeng发布了新的文献求助10
14秒前
终梦应助xinxin采纳,获得10
14秒前
derrrrrsin发布了新的文献求助10
14秒前
14秒前
14秒前
chem_jwy发布了新的文献求助10
15秒前
皮凡发布了新的文献求助10
15秒前
Souveb完成签到,获得积分10
16秒前
17秒前
栗悟饭发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521661
求助须知:如何正确求助?哪些是违规求助? 4612952
关于积分的说明 14536550
捐赠科研通 4550467
什么是DOI,文献DOI怎么找? 2493708
邀请新用户注册赠送积分活动 1474837
关于科研通互助平台的介绍 1446243