Semantic segmentation of anomalous diffusion using deep convolutional networks

分割 计算机科学 人工智能 深度学习 扩散 可解释性 统计物理学 模式识别(心理学) 物理 热力学
作者
Xiang Qu,Yi Hu,Wenjie Cai,Yang Xu,Hu Ke,Guolong Zhu,Zihan Huang
出处
期刊:Physical review research [American Physical Society]
卷期号:6 (1) 被引量:5
标识
DOI:10.1103/physrevresearch.6.013054
摘要

Heterogeneous dynamics commonly emerges in anomalous diffusion with intermittent transitions of diffusion states but proves challenging to identify using conventional statistical methods. To effectively capture these transient changes of diffusion states, we propose a deep learning model (U-AnDi) for the semantic segmentation of anomalous diffusion trajectories. This model is developed with the dilated causal convolution (DCC), gated activation unit (GAU), and U-Net architecture. The study addresses two key subtasks related to trajectory segmentation and changepoint detection, concentrating on variations in diffusion exponents and dynamic models. Additionally, extended analyses are conducted on the segmentation of single-model trajectories, multistate biological trajectories, and anomalous diffusion with added correlation functions. By rationally designing comparative models and evaluating the performance of U-AnDi against these models, we discover that U-AnDi consistently outperforms other models across all segmentation tasks, thereby affirming its superiority in the field. This performance edge also sheds light on the interpretability of U-AnDi's core components: DCC, GAU, and U-Net. The clarity with which these components contribute to U-AnDi's success underscores their congruence with the intrinsic physics underlying anomalous diffusion. Furthermore, our model is examined using real-world anomalous diffusion data: the diffusion of transmembrane proteins on cell membrane surfaces, and the segmentation results are highly consistent with experimental observations. Our findings could offer a heuristic deep learning solution for the detection of heterogeneous dynamics in single-molecule/particle tracking experiments, and have the potential to be generalized as a universal scheme for time-series segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
灵巧妙芙完成签到,获得积分20
1秒前
4秒前
hug完成签到,获得积分0
4秒前
优美豪英完成签到,获得积分10
4秒前
积极太清完成签到,获得积分10
4秒前
xzxz发布了新的文献求助10
5秒前
Emily发布了新的文献求助10
5秒前
5秒前
00完成签到,获得积分10
6秒前
端庄千青发布了新的文献求助10
6秒前
噗噗完成签到 ,获得积分10
6秒前
开心小猪完成签到,获得积分10
7秒前
普通鹏完成签到,获得积分10
8秒前
8秒前
害怕的问儿完成签到,获得积分10
8秒前
8秒前
热血狂林完成签到,获得积分10
8秒前
封嘉懿应助Medneuron采纳,获得10
8秒前
HEROTREE发布了新的文献求助10
10秒前
11秒前
Island完成签到,获得积分10
11秒前
热血狂林发布了新的文献求助10
11秒前
汉堡包应助华华采纳,获得10
12秒前
12秒前
yacen发布了新的文献求助10
13秒前
13秒前
Frrrrreda完成签到,获得积分10
13秒前
温眸发布了新的文献求助10
14秒前
15秒前
听话的蜡烛完成签到,获得积分10
15秒前
一个小太阳鸭完成签到,获得积分10
18秒前
18秒前
可乐发布了新的文献求助10
18秒前
Lyue发布了新的文献求助10
19秒前
20秒前
seventonight2完成签到,获得积分10
21秒前
21秒前
GT完成签到,获得积分10
21秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3263972
求助须知:如何正确求助?哪些是违规求助? 2904265
关于积分的说明 8329206
捐赠科研通 2574402
什么是DOI,文献DOI怎么找? 1399090
科研通“疑难数据库(出版商)”最低求助积分说明 654403
邀请新用户注册赠送积分活动 633049