Machine Learning with Explainability for Suicide Ideation Detection from Social Media Data

可解释性 自杀意念 机器学习 人工智能 计算机科学 构思 支持向量机 社会化媒体 自杀未遂 过程(计算) 召回 深度学习 心理学 自杀预防 毒物控制 认知心理学 万维网 医学 认知科学 环境卫生 操作系统
作者
Rafiqul Islam,Md. Kowsar Hossain Sakib,Shanjita Akter Prome,Xianzhi Wang,Anwaar Ulhaq,Cesar Sanín,David Asirvatham
标识
DOI:10.1109/besc59560.2023.10386773
摘要

Suicide is one of the major causes of death globally. Analysis of social media posts and in-depth insights show that some people have suicide ideas. In order to save more lives, it is crucial to comprehend the behavior of suicidal attempters. However, identifying and explaining suicidal thoughts poses a significant challenge in psychiatry. Additionally, analysing suicidal behavior is a complex procedure involving several variables based on the individual’s preferences and the data type. Although traditional methods have been utilized to identify clinical factors for suicide ideation detection (SID), these models often lack interpretability and understanding. Therefore, the primary aim of this research is to apply several deep learning (DL) and machine learning (ML) techniques such as BERT, LSTM, BiLSTM, RF, SVM, GaussianNB, LR, and KNeighbors blending with interpretable models such as LIME and SHAP to provide valuable insights into the importance of different features and make models more transparent in the SID process. The experiments were conducted on a publicly available dataset comprising 24,101 posts, categorized as either suicidal or non-suicidal. The implemented method brings about significant enhancements in performance in comparison. A comparison of all performance measures reveals that the LSTM model is particularly good at processing and classifying textual data, with higher accuracy, precision, recall, and AUC scores than the other models tested.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助eywct采纳,获得10
刚刚
1秒前
1秒前
CipherSage应助熊国开采纳,获得10
1秒前
Sweet完成签到 ,获得积分10
1秒前
gzslwddhjx发布了新的文献求助10
2秒前
Islet发布了新的文献求助10
2秒前
3秒前
3秒前
李爱国应助王雪儿哈哈哈采纳,获得10
4秒前
SciGPT应助llll采纳,获得10
4秒前
6秒前
6秒前
6秒前
6秒前
晚上吃什么完成签到,获得积分10
6秒前
ChemMa发布了新的文献求助10
7秒前
丫丫发布了新的文献求助10
7秒前
易安发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
笨笨忘幽发布了新的文献求助10
9秒前
窦文涛完成签到,获得积分10
9秒前
9秒前
完美世界应助liuying采纳,获得10
10秒前
11秒前
THJJ完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
云赵完成签到,获得积分10
12秒前
斯文败类应助易安采纳,获得10
12秒前
12秒前
CWNU_HAN应助jyk采纳,获得30
13秒前
高天雨发布了新的文献求助20
13秒前
THJJ发布了新的文献求助10
14秒前
健康的洋葱关注了科研通微信公众号
15秒前
幸福鞯发布了新的文献求助10
15秒前
suiwuya完成签到,获得积分10
15秒前
所所应助暖阳采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300