Machine Learning with Explainability for Suicide Ideation Detection from Social Media Data

可解释性 自杀意念 机器学习 人工智能 计算机科学 构思 支持向量机 社会化媒体 自杀未遂 过程(计算) 召回 深度学习 心理学 自杀预防 毒物控制 认知心理学 万维网 医学 认知科学 环境卫生 操作系统
作者
Rafiqul Islam,Md. Kowsar Hossain Sakib,Shanjita Akter Prome,Xianzhi Wang,Anwaar Ulhaq,Cesar Sanín,David Asirvatham
标识
DOI:10.1109/besc59560.2023.10386773
摘要

Suicide is one of the major causes of death globally. Analysis of social media posts and in-depth insights show that some people have suicide ideas. In order to save more lives, it is crucial to comprehend the behavior of suicidal attempters. However, identifying and explaining suicidal thoughts poses a significant challenge in psychiatry. Additionally, analysing suicidal behavior is a complex procedure involving several variables based on the individual’s preferences and the data type. Although traditional methods have been utilized to identify clinical factors for suicide ideation detection (SID), these models often lack interpretability and understanding. Therefore, the primary aim of this research is to apply several deep learning (DL) and machine learning (ML) techniques such as BERT, LSTM, BiLSTM, RF, SVM, GaussianNB, LR, and KNeighbors blending with interpretable models such as LIME and SHAP to provide valuable insights into the importance of different features and make models more transparent in the SID process. The experiments were conducted on a publicly available dataset comprising 24,101 posts, categorized as either suicidal or non-suicidal. The implemented method brings about significant enhancements in performance in comparison. A comparison of all performance measures reveals that the LSTM model is particularly good at processing and classifying textual data, with higher accuracy, precision, recall, and AUC scores than the other models tested.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
肌肉猛男完成签到,获得积分10
1秒前
领导范儿应助memorise采纳,获得30
1秒前
SciGPT应助龙江游侠采纳,获得10
1秒前
火星上的西牛完成签到,获得积分10
1秒前
qwdqwd完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
明理的蜗牛完成签到,获得积分10
3秒前
pharrah完成签到,获得积分10
3秒前
Qianyun完成签到,获得积分10
3秒前
3秒前
吴淑明完成签到,获得积分10
4秒前
clara完成签到,获得积分10
4秒前
喵喵发布了新的文献求助10
4秒前
4秒前
kosmos完成签到,获得积分10
4秒前
里苏特完成签到,获得积分10
4秒前
4秒前
qll完成签到,获得积分10
5秒前
读书娃儿完成签到,获得积分10
5秒前
5秒前
xue发布了新的文献求助10
5秒前
5秒前
艾席文完成签到,获得积分10
6秒前
陈开月完成签到,获得积分10
6秒前
胡图图完成签到,获得积分10
6秒前
田様应助Adzuki0812采纳,获得10
6秒前
曲线发布了新的文献求助10
6秒前
6秒前
lore完成签到,获得积分10
6秒前
江江完成签到,获得积分10
6秒前
结实的惊蛰完成签到,获得积分20
6秒前
啊阿阿阿沐完成签到,获得积分10
7秒前
7秒前
clara发布了新的文献求助10
7秒前
7秒前
奋斗叫兽完成签到 ,获得积分10
7秒前
芒果完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017