碲
带隙
材料科学
元素分析
光电子学
结晶学
化学
冶金
无机化学
作者
Yuting Sun,Tamihiro Gotoh,Bowen Li,Huanglong Li,Min Zhu
标识
DOI:10.1002/pssr.202300414
摘要
Elemental tellurium electrical switch, relying on a transient crystal–liquid–crystal phase transition, has recently been proposed as a promising selector candidate for the next‐generation 3D high‐density memory, bridging performance gap in today's computer. Further miniaturization of the switch cell to increase memory density strongly depends on the scalability of the tellurium film, which, however, has not been experimentally studied. Herein, the tellurium films are prepared with the thickness downscaled from 400 to 2 nm and a significant increase is found in the bandgap from 0.29 to 0.91 eV, as predicted by ab initio molecular dynamics. Interestingly, the as‐deposited tellurium films with a thickness above 3 nm are in the crystalline trigonal phase, whereas 2 nm thick film suddenly becomes amorphous, observed by both Raman and transmission electron microscopies. In this finding, since the leakage current of the elemental tellurium switch is determined by both the Schottky barrier between tellurium/electrode interface and the bandgap of the tellurium film, a reduction in leakage current is predicted with further miniaturization.
科研通智能强力驱动
Strongly Powered by AbleSci AI