FairGap: Fairness-Aware Recommendation via Generating Counterfactual Graph

计算机科学 反事实思维 图形 推荐系统 情报检索 理论计算机科学 认识论 哲学
作者
Wei Chen,Yiqing Wu,Zhao Zhang,Fuzhen Zhuang,Zhongshi He,Ruobing Xie,Feng Xia
出处
期刊:ACM Transactions on Information Systems 卷期号:42 (4): 1-25 被引量:3
标识
DOI:10.1145/3638352
摘要

The emergence of Graph Neural Networks (GNNs) has greatly advanced the development of recommendation systems. Recently, many researchers have leveraged GNN-based models to learn fair representations for users and items. However, current GNN-based models suffer from biased user–item interaction data, which negatively impacts recommendation fairness. Although there have been several studies employing adversarial learning to mitigate this issue in recommendation systems, they mostly focus on modifying the model training approach with fairness regularization and neglect direct intervention of biased interaction. In contrast to these models, this article introduces a novel perspective by directly intervening in observed interactions to generate a counterfactual graph (called FairGap) that is not influenced by sensitive node attributes, enabling us to learn fair representations for users and items easily. We design FairGap to answer the key counterfactual question: “Would interactions with an item remain unchanged if a user’s sensitive attributes were concealed?”. We also provide theoretical proofs to show that our learning strategy via the counterfactual graph is unbiased in expectation. Moreover, we propose a fairness-enhancing mechanism to continuously improve user fairness in the graph-based recommendation. Extensive experimental results against state-of-the-art competitors and base models on three real-world datasets validate the effectiveness of our proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miamia77应助Timing侠采纳,获得10
刚刚
ghost完成签到,获得积分10
刚刚
lucky关注了科研通微信公众号
1秒前
1秒前
光电很亮发布了新的文献求助10
1秒前
谨慎道消完成签到,获得积分10
2秒前
孤独盼望完成签到,获得积分10
2秒前
沉默寻凝完成签到,获得积分10
2秒前
3秒前
zxx5012发布了新的文献求助10
3秒前
追寻谷蕊完成签到,获得积分10
4秒前
浅辰完成签到,获得积分10
5秒前
5秒前
humblelucas完成签到,获得积分10
6秒前
LYY发布了新的文献求助10
6秒前
6秒前
7秒前
jay完成签到,获得积分10
8秒前
8秒前
9秒前
XPR完成签到 ,获得积分10
9秒前
尊敬雪萍完成签到,获得积分10
9秒前
ThirtyTwo完成签到,获得积分20
9秒前
丘比特应助韵寒采纳,获得10
10秒前
YY发布了新的文献求助10
10秒前
mark发布了新的文献求助10
10秒前
自然1111发布了新的文献求助10
10秒前
10秒前
liuyouqing完成签到,获得积分10
10秒前
漠北发布了新的文献求助10
11秒前
一如既往发布了新的文献求助10
11秒前
12秒前
香蕉觅云应助呆萌的觅松采纳,获得10
12秒前
12秒前
13秒前
打打应助小小王科研采纳,获得10
14秒前
yanzinie发布了新的文献求助10
14秒前
lucky发布了新的文献求助10
14秒前
14秒前
眞_完成签到 ,获得积分10
15秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228498
求助须知:如何正确求助?哪些是违规求助? 2876232
关于积分的说明 8194498
捐赠科研通 2543416
什么是DOI,文献DOI怎么找? 1373738
科研通“疑难数据库(出版商)”最低求助积分说明 646816
邀请新用户注册赠送积分活动 621404