FairGap: Fairness-Aware Recommendation via Generating Counterfactual Graph

计算机科学 反事实思维 图形 推荐系统 情报检索 理论计算机科学 认识论 哲学
作者
Wei Chen,Yiqing Wu,Zhao Zhang,Fuzhen Zhuang,Zhongshi He,Ruobing Xie,Feng Xia
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (4): 1-25 被引量:3
标识
DOI:10.1145/3638352
摘要

The emergence of Graph Neural Networks (GNNs) has greatly advanced the development of recommendation systems. Recently, many researchers have leveraged GNN-based models to learn fair representations for users and items. However, current GNN-based models suffer from biased user–item interaction data, which negatively impacts recommendation fairness. Although there have been several studies employing adversarial learning to mitigate this issue in recommendation systems, they mostly focus on modifying the model training approach with fairness regularization and neglect direct intervention of biased interaction. In contrast to these models, this article introduces a novel perspective by directly intervening in observed interactions to generate a counterfactual graph (called FairGap) that is not influenced by sensitive node attributes, enabling us to learn fair representations for users and items easily. We design FairGap to answer the key counterfactual question: “Would interactions with an item remain unchanged if a user’s sensitive attributes were concealed?”. We also provide theoretical proofs to show that our learning strategy via the counterfactual graph is unbiased in expectation. Moreover, we propose a fairness-enhancing mechanism to continuously improve user fairness in the graph-based recommendation. Extensive experimental results against state-of-the-art competitors and base models on three real-world datasets validate the effectiveness of our proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助陈三采纳,获得10
刚刚
Yep0672发布了新的文献求助10
刚刚
689发布了新的文献求助10
2秒前
baishui发布了新的文献求助10
2秒前
笔墨留香完成签到,获得积分10
2秒前
SHAO应助满意的山水采纳,获得30
3秒前
3秒前
3秒前
水水完成签到,获得积分10
3秒前
啊嘞嘞发布了新的文献求助10
4秒前
傻傻完成签到,获得积分20
5秒前
shalimar完成签到,获得积分10
5秒前
李志华完成签到,获得积分10
5秒前
可爱的函函应助水煮牛肉采纳,获得10
5秒前
tsts完成签到,获得积分10
5秒前
奶冻完成签到,获得积分10
6秒前
6秒前
6秒前
lzy发布了新的文献求助10
6秒前
失眠烨华发布了新的文献求助10
6秒前
Jun完成签到 ,获得积分10
6秒前
深情安青应助瞬华采纳,获得10
7秒前
7秒前
zzzkyt发布了新的文献求助10
7秒前
狂风阿来完成签到 ,获得积分10
7秒前
温柔的迎荷完成签到,获得积分10
8秒前
8秒前
8秒前
搜集达人应助xiekai301采纳,获得10
8秒前
夏冰完成签到,获得积分10
9秒前
木九黎完成签到,获得积分10
9秒前
biubiu发布了新的文献求助10
9秒前
田様应助mx采纳,获得10
10秒前
day_on发布了新的文献求助10
10秒前
娜娜发布了新的文献求助10
11秒前
郝56发布了新的文献求助10
11秒前
诚心谷南完成签到,获得积分10
11秒前
12秒前
apathy完成签到,获得积分10
12秒前
卢yi完成签到,获得积分20
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958507
求助须知:如何正确求助?哪些是违规求助? 3504843
关于积分的说明 11120375
捐赠科研通 3236122
什么是DOI,文献DOI怎么找? 1788663
邀请新用户注册赠送积分活动 871249
科研通“疑难数据库(出版商)”最低求助积分说明 802642