FairGap: Fairness-Aware Recommendation via Generating Counterfactual Graph

计算机科学 反事实思维 图形 推荐系统 情报检索 理论计算机科学 认识论 哲学
作者
Wei Chen,Yiqing Wu,Zhao Zhang,Fuzhen Zhuang,Zhongshi He,Ruobing Xie,Feng Xia
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (4): 1-25 被引量:3
标识
DOI:10.1145/3638352
摘要

The emergence of Graph Neural Networks (GNNs) has greatly advanced the development of recommendation systems. Recently, many researchers have leveraged GNN-based models to learn fair representations for users and items. However, current GNN-based models suffer from biased user–item interaction data, which negatively impacts recommendation fairness. Although there have been several studies employing adversarial learning to mitigate this issue in recommendation systems, they mostly focus on modifying the model training approach with fairness regularization and neglect direct intervention of biased interaction. In contrast to these models, this article introduces a novel perspective by directly intervening in observed interactions to generate a counterfactual graph (called FairGap) that is not influenced by sensitive node attributes, enabling us to learn fair representations for users and items easily. We design FairGap to answer the key counterfactual question: “Would interactions with an item remain unchanged if a user’s sensitive attributes were concealed?”. We also provide theoretical proofs to show that our learning strategy via the counterfactual graph is unbiased in expectation. Moreover, we propose a fairness-enhancing mechanism to continuously improve user fairness in the graph-based recommendation. Extensive experimental results against state-of-the-art competitors and base models on three real-world datasets validate the effectiveness of our proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
月蚀六花发布了新的文献求助30
1秒前
隐形曼青应助小兔叽采纳,获得10
1秒前
1秒前
田様应助hahhhhhh2采纳,获得10
1秒前
充电宝应助WN采纳,获得10
1秒前
栗子完成签到,获得积分10
1秒前
多情遥完成签到,获得积分10
1秒前
精明寒蕾完成签到,获得积分10
1秒前
2秒前
2秒前
TYG完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
丽小杰完成签到,获得积分10
3秒前
triptalk完成签到,获得积分10
3秒前
墨尘发布了新的文献求助30
3秒前
黑黑黑完成签到,获得积分10
4秒前
4秒前
4秒前
qingxinhuo完成签到 ,获得积分10
4秒前
动听锦程发布了新的文献求助10
5秒前
乐乐应助玖a采纳,获得10
5秒前
杨松发布了新的文献求助10
6秒前
科研通AI6应助人123456采纳,获得10
6秒前
AAA完成签到,获得积分10
6秒前
看不完完成签到,获得积分10
6秒前
7秒前
清脆泥猴桃完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
老实的玉米完成签到,获得积分10
8秒前
zhangjiabin完成签到,获得积分10
8秒前
XIGUA完成签到,获得积分10
8秒前
8秒前
wanci应助Fan采纳,获得30
9秒前
wanci给平淡平萱的求助进行了留言
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477776
求助须知:如何正确求助?哪些是违规求助? 4579563
关于积分的说明 14369317
捐赠科研通 4507785
什么是DOI,文献DOI怎么找? 2470190
邀请新用户注册赠送积分活动 1457093
关于科研通互助平台的介绍 1431066