Unveiling pre-crash driving behavior common features based upon behavior entropy

撞车 熵(时间箭头) 毒物控制 工程类 计算机科学 统计 运输工程 模拟 数学 医学 物理 环境卫生 量子力学 程序设计语言
作者
Ning Xie,Rongjie Yu,Yang He,Hao Li,S. Li
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:196: 107433-107433 被引量:3
标识
DOI:10.1016/j.aap.2023.107433
摘要

Driving behavior is considered as the primary crash influencing factor, whereas studies claimed that over 90% crashes were attributed by behavior features. Therefore, unveil pre-crash driving behavior features is of great importance for crash prevention. Previous studies have established the correlations between features such as vehicle speed, speed variability, and the probability of crash occurrences, but these analyses have concluded inconsistent results. This is due to the varying operating characteristics among roadway facilities, where given the same driving behavior statistical features, the corresponding traffic states are not identical. In this study, a behavioral entropy index was proposed to address the abovementioned issue. First, through comparing the individual driving behavior with the group distribution, behavioral entropy index was calculated to quantify the abnormality of driving behavior. Then, crash classification models were established by comparing the behavioral entropy prior to crash events and normal driving conditions. The empirical analyses have been conducted based on 1,634,770 naturalistic driving trajectories and 1027 crash events. And models have been carried out for urban roadway sections, urban intersections, and highway sections separately. The results showed that utilizing the behavior entropy instead of the statistical features could enhance the crash classification accuracy by 11.3%. And common pre-crash features of increased behavioral entropy were identified. Moreover, the speed coefficient of variation (QCV) entropy was concluded as the most influencing factor, which can be used for real-time driving risk monitoring and enables individual-level hazard mitigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助verbal2005采纳,获得10
1秒前
Owen应助Winfred采纳,获得10
1秒前
酷炫的梦竹完成签到 ,获得积分10
2秒前
晓晓完成签到,获得积分10
2秒前
Estelle0928发布了新的文献求助10
2秒前
金钱完成签到,获得积分10
2秒前
可与完成签到,获得积分10
4秒前
彗星发布了新的文献求助10
4秒前
今后应助书生采纳,获得10
5秒前
Singularity应助cc采纳,获得10
5秒前
慕青应助时尚的安容采纳,获得10
5秒前
谨慎的哈密瓜完成签到 ,获得积分10
7秒前
588完成签到,获得积分10
8秒前
song发布了新的文献求助10
8秒前
吃一口王俊凯完成签到,获得积分10
9秒前
JamesPei应助hkh采纳,获得10
9秒前
10秒前
shirley完成签到,获得积分10
12秒前
Lc完成签到,获得积分10
13秒前
啊啊啊发布了新的文献求助10
14秒前
落寞的唯雪完成签到,获得积分10
14秒前
Singularity应助cc采纳,获得10
14秒前
15秒前
15秒前
15秒前
许思真完成签到,获得积分10
16秒前
18秒前
万能图书馆应助舒适枕头采纳,获得10
18秒前
18秒前
慕青应助这小猪真帅采纳,获得10
19秒前
YFW完成签到,获得积分20
20秒前
Cici发布了新的文献求助10
21秒前
深情安青应助何困困不困采纳,获得10
21秒前
22秒前
壮观的擎发布了新的文献求助10
22秒前
英俊的铭应助hjmsn采纳,获得10
22秒前
small完成签到,获得积分10
22秒前
YifanWang应助无误采纳,获得10
22秒前
YifanWang应助无误采纳,获得10
22秒前
YifanWang应助无误采纳,获得10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014