Unveiling pre-crash driving behavior common features based upon behavior entropy

撞车 熵(时间箭头) 毒物控制 工程类 计算机科学 统计 运输工程 模拟 数学 医学 物理 环境卫生 量子力学 程序设计语言
作者
Ning Xie,Rongjie Yu,Yang He,Hao Li,S. Li
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:196: 107433-107433 被引量:3
标识
DOI:10.1016/j.aap.2023.107433
摘要

Driving behavior is considered as the primary crash influencing factor, whereas studies claimed that over 90% crashes were attributed by behavior features. Therefore, unveil pre-crash driving behavior features is of great importance for crash prevention. Previous studies have established the correlations between features such as vehicle speed, speed variability, and the probability of crash occurrences, but these analyses have concluded inconsistent results. This is due to the varying operating characteristics among roadway facilities, where given the same driving behavior statistical features, the corresponding traffic states are not identical. In this study, a behavioral entropy index was proposed to address the abovementioned issue. First, through comparing the individual driving behavior with the group distribution, behavioral entropy index was calculated to quantify the abnormality of driving behavior. Then, crash classification models were established by comparing the behavioral entropy prior to crash events and normal driving conditions. The empirical analyses have been conducted based on 1,634,770 naturalistic driving trajectories and 1027 crash events. And models have been carried out for urban roadway sections, urban intersections, and highway sections separately. The results showed that utilizing the behavior entropy instead of the statistical features could enhance the crash classification accuracy by 11.3%. And common pre-crash features of increased behavioral entropy were identified. Moreover, the speed coefficient of variation (QCV) entropy was concluded as the most influencing factor, which can be used for real-time driving risk monitoring and enables individual-level hazard mitigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助summer采纳,获得10
刚刚
刚刚
杨师傅完成签到 ,获得积分10
1秒前
惊涛骇浪发布了新的文献求助10
1秒前
苹果蜗牛完成签到 ,获得积分10
3秒前
啊o完成签到 ,获得积分10
3秒前
我吃柠檬发布了新的文献求助10
3秒前
小蘑菇应助甘乐采纳,获得10
3秒前
yy完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
蔡龙杰完成签到,获得积分10
4秒前
4秒前
4秒前
123发布了新的文献求助10
4秒前
5秒前
YARA发布了新的文献求助10
5秒前
啾比文完成签到,获得积分10
5秒前
6秒前
green给green的求助进行了留言
7秒前
艾因兹怀斯完成签到,获得积分10
8秒前
黄院士发布了新的文献求助10
8秒前
9秒前
9秒前
田田完成签到 ,获得积分10
9秒前
June发布了新的文献求助30
9秒前
yjn完成签到,获得积分10
10秒前
Zhlili发布了新的文献求助20
10秒前
活泼忆丹完成签到,获得积分10
10秒前
11秒前
11秒前
玛卡发布了新的文献求助10
11秒前
12秒前
李伟完成签到,获得积分10
13秒前
jias发布了新的文献求助10
13秒前
李松林发布了新的文献求助10
14秒前
淡然的萝应助a3979107采纳,获得10
14秒前
李松林发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584104
求助须知:如何正确求助?哪些是违规求助? 4667626
关于积分的说明 14768874
捐赠科研通 4610007
什么是DOI,文献DOI怎么找? 2529583
邀请新用户注册赠送积分活动 1498629
关于科研通互助平台的介绍 1467267