铁磁性
自旋电子学
居里温度
超级交换
磁性
凝聚态物理
材料科学
铁磁性
结晶学
物理
磁化
化学
量子力学
磁场
作者
Fanjunjie Han,Yan Xu,Fei Li,Hong Yu,Wenjing Li,Xin Zhong,Aitor Bergara,Guochun Yang
出处
期刊:Physical review
日期:2023-01-13
卷期号:107 (2)
被引量:13
标识
DOI:10.1103/physrevb.107.024414
摘要
The design of high-temperature ferrimagnetic materials is highly demanded for next-generation functional spintronic devices. Here, we propose that the combination of nonmetallic structural units and magnetic atoms is an effective way to achieve high-temperature magnetism in two-dimensional (2D) materials. The predicted $\mathrm{Fe}{\mathrm{P}}_{4}$ monolayer, consisting of quasisquare ${\mathrm{P}}_{4}$ units, shows intrinsic half-metal ferrimagnetism above room temperature. Each Fe atom is coordinated with four P atoms associated with the surrounding four quasisquare ${\mathrm{P}}_{4}$ units. First-principles calculations suggest that the $\mathrm{Fe}{\mathrm{P}}_{4}$ monolayer presents a Curie temperature of 460 K. More interestingly, the itinerant electrons and the unique quasisquare ${\mathrm{P}}_{4}$ units act as intermediaries and play an important role in promoting the Ruderman-Kittel-Kasuya-Yosida and superexchange interactions, respectively, which induces a robust ferrimagnetism. Our findings not only shed light on the promising future of 2D magnetic materials, but also are of interest for high-temperature spintronic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI