Prostate lesion segmentation based on a 3D end-to-end convolution neural network with deep multi-scale attention

分割 计算机科学 人工智能 卷积神经网络 深度学习 背景(考古学) 模式识别(心理学) 人工神经网络 特征(语言学) 前列腺癌 计算机视觉 医学 癌症 古生物学 语言学 哲学 内科学 生物
作者
Enmin Song,Jiaosong Long,Guangzhi Ma,Hong Liu,Chih‐Cheng Hung,Renchao Jin,Peijun Wang,Wei Wang
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:99: 98-109 被引量:13
标识
DOI:10.1016/j.mri.2023.01.015
摘要

Prostate cancer is one of the deadest cancers among human beings. To better diagnose the prostate cancer, prostate lesion segmentation becomes a very important work, but its progress is very slow due to the prostate lesions small in size, irregular in shape, and blurred in contour. Therefore, automatic prostate lesion segmentation from mp-MRI is a great significant work and a challenging task. However, the most existing multi-step segmentation methods based on voxel-level classification are time-consuming, may introduce errors in different steps and lead to error accumulation. To decrease the computation time, harness richer 3D spatial features, and fuse the multi-level contextual information of mp-MRI, we present an automatic segmentation method in which all steps are optimized conjointly as one step to form our end-to-end convolutional neural network. The proposed end-to-end network DMSA-V-Net consists of two parts: (1) a 3D V-Net is used as the backbone network, it is the first attempt in employing 3D convolutional neural network for CS prostate lesion segmentation, (2) a deep multi-scale attention mechanism is introduced into the 3D V-Net which can highly focus on the ROI while suppressing the redundant background. As a merit, the attention can adaptively re-align the context information between the feature maps at different scales and the saliency maps in high-levels. We performed experiments based on five cross-fold validation with data including 97 patients. The results show that the Dice and sensitivity are 0.7014 and 0.8652 respectively, which demonstrates that our segmentation approach is more significant and accurate compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星沐影完成签到,获得积分10
2秒前
xiu完成签到,获得积分10
2秒前
3秒前
LC完成签到,获得积分10
3秒前
4秒前
苏鱼发布了新的文献求助30
5秒前
5秒前
完美问玉发布了新的文献求助10
6秒前
科研通AI5应助王小明采纳,获得10
6秒前
学术laji完成签到 ,获得积分10
6秒前
7秒前
冷傲的访云完成签到,获得积分10
8秒前
9秒前
筱飞完成签到 ,获得积分10
10秒前
10秒前
许元冬完成签到,获得积分10
10秒前
含蓄清炎发布了新的文献求助10
11秒前
11秒前
Chen发布了新的文献求助10
11秒前
希望天下0贩的0应助hgc采纳,获得10
11秒前
饭团完成签到,获得积分10
12秒前
13秒前
13秒前
osh111发布了新的文献求助10
16秒前
16秒前
朱朱猪猪完成签到,获得积分10
16秒前
17秒前
yyydd发布了新的文献求助10
17秒前
完美问玉完成签到,获得积分10
17秒前
17秒前
21秒前
孔雀翎发布了新的文献求助10
23秒前
向着阳光奔跑完成签到,获得积分20
24秒前
24秒前
从容的无极应助蓝荆采纳,获得10
25秒前
负责凛完成签到,获得积分10
25秒前
空谷新苗发布了新的文献求助10
26秒前
26秒前
叶长亭发布了新的文献求助20
26秒前
火星上访旋完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542916
求助须知:如何正确求助?哪些是违规求助? 3120308
关于积分的说明 9342102
捐赠科研通 2818290
什么是DOI,文献DOI怎么找? 1549524
邀请新用户注册赠送积分活动 722160
科研通“疑难数据库(出版商)”最低求助积分说明 712978