Precise Discrimination for Multiple Etiologies of Dementia Cases Based on Deep Learning with Electroencephalography

痴呆 病因学 脑电图 医学 听力学 心理学 精神科 认知心理学 内科学 神经科学 疾病
作者
Masahiro Hata,Yusuke Watanabe,Takumi Tanaka,Kimihisa Awata,Yuki Miyazaki,Ryohei Fukuma,Daiki Taomoto,Yuto Satake,Takashi Suehiro,Hideki Kanemoto,Kenji Yoshiyama,Masao Iwase,Shunichiro Ikeda,Keiichiro Nishida,Yoshiteru Takekita,Masafumi Yoshimura,Ryouhei Ishii,Hiroaki Kazui,Tatsuya Harada,Haruhiko Kishima
出处
期刊:Neuropsychobiology 卷期号:82 (2): 81-90 被引量:8
标识
DOI:10.1159/000528439
摘要

It is critical to develop accurate and universally available biomarkers for dementia diseases to appropriately deal with the dementia problems under world-wide rapid increasing of patients with dementia. In this sense, electroencephalography (EEG) has been utilized as a promising examination to screen and assist in diagnosing dementia, with advantages of sensitiveness to neural functions, inexpensiveness, and high availability. Moreover, the algorithm-based deep learning can expand EEG applicability, yielding accurate and automatic classification easily applied even in general hospitals without any research specialist.We utilized a novel deep neural network, with which high accuracy of discrimination was archived in neurological disorders in the previous study. Based on this network, we analyzed EEG data of healthy volunteers (HVs, N = 55), patients with Alzheimer's disease (AD, N = 101), dementia with Lewy bodies (DLB, N = 75), and idiopathic normal pressure hydrocephalus (iNPH, N = 60) to evaluate the discriminative accuracy of these diseases.High discriminative accuracies were archived between HV and patients with dementia, yielding 81.7% (vs. AD), 93.9% (vs. DLB), 93.1% (vs. iNPH), and 87.7% (vs. AD, DLB, and iNPH).This study revealed that the EEG data of patients with dementia were successfully discriminated from HVs based on a novel deep learning algorithm, which could be useful for automatic screening and assisting diagnosis of dementia diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助清新的沛蓝采纳,获得10
刚刚
1秒前
科研通AI5应助Zpiao采纳,获得10
1秒前
彭于晏应助小鬼采纳,获得10
2秒前
完美世界应助wangzai采纳,获得10
3秒前
SYLH应助生椰拿铁不加生椰采纳,获得10
3秒前
Hello应助慵懒猫采纳,获得10
3秒前
xinghun910应助shirelylee采纳,获得50
3秒前
英俊的铭应助奥特超曼采纳,获得30
4秒前
传奇3应助从容的冰凡采纳,获得10
5秒前
无花果应助能干的海露采纳,获得10
6秒前
梨米特完成签到,获得积分20
6秒前
6秒前
7秒前
shi hui应助perfect采纳,获得10
7秒前
SYLH应助perfect采纳,获得10
7秒前
8秒前
张钦奎发布了新的文献求助10
9秒前
火星上的帽子完成签到,获得积分20
10秒前
梨米特发布了新的文献求助30
12秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
猪猪hero应助科研通管家采纳,获得10
14秒前
14秒前
迟大猫应助科研通管家采纳,获得20
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
贰鸟应助科研通管家采纳,获得20
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
天天快乐应助SZY采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
15秒前
kingwill应助科研通管家采纳,获得20
15秒前
无花果应助科研通管家采纳,获得10
15秒前
annafan应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
yudandan@CJLU发布了新的文献求助10
15秒前
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligonucleotide Synthesis: a Practical Approach 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589979
求助须知:如何正确求助?哪些是违规求助? 3158436
关于积分的说明 9519836
捐赠科研通 2861379
什么是DOI,文献DOI怎么找? 1572442
邀请新用户注册赠送积分活动 737920
科研通“疑难数据库(出版商)”最低求助积分说明 722567